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Abstract 
 

Intuitively, we often seek out beautiful scenery when we want a respite from our 

busy lives, but do such settings actually help to boost our wellbeing? While 

architects, urban planners and policymakers have puzzled over this question for 

centuries, quantitative analyses have been held back by a lack of data on the 

beauty of our environment. However, the vast volumes of geotagged images readily 

shared on the Internet, alongside developments in computer vision and deep 

learning, are opening up opportunities to quantify aspects of the visual environment 

that were previously hard to measure. In the research reported here, we ask: might 

the beauty of outdoor environments have a quantifiable association with increased 

wellbeing? 

This thesis explores the following related strands of work: (1) How accurately can 

we automatically predict the beauty of scenes for which we do not have survey or 

crowdsourced scenicness data? (2) Is there a quantifiable connection between the 

beauty of the environment, as measured by scenicness, and people’s wellbeing? (3) 

Can we develop a broader understanding of what beautiful outdoor spaces are 

composed of? 

In the first strand, we investigate whether a deep learning model can be trained 

to automatically infer the scenicness of images. We find that a retrained 

convolutional neural network performs remarkably well, and that this network 

highlights not only natural but also built-up locations as being scenic. In the second 

strand, we explore the connection between beautiful scenery and different types of 

wellbeing: happiness, mental distress and life satisfaction. We find that individuals 

experience more happiness when visiting more scenic locations, even when we 

account for a range of factors such as weather conditions and the income of local 

inhabitants. However, in terms of mental distress and life satisfaction, we do not find 

evidence that individuals who live in more scenic locations report higher levels of 

wellbeing. In the third and final strand, we analyse crowdsourced data and discover 

that beautiful places are composed of natural features such as ‘Coast’, ‘Mountain’ 

and ‘Canal Natural’ as well as man-made structures such as ‘Tower’, ‘Castle’ and 

‘Viaduct’. Importantly, while scenes containing ‘Trees’ tend to rate highly, places 

containing more bland natural green features such as ‘Grass’ and ‘Athletic Fields’ 

are considered less scenic.  

The research reported in this thesis takes an important step towards providing 

evidence that the beauty of the environment, and therefore decisions made about 
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the design of environments, might have a crucial impact on people's everyday 

wellbeing. Our results also demonstrate that online data combined with neural 

networks can provide a deeper understanding of which environments humans might 

find beautiful.  

  



 11 
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Chapter 1 
Introduction 

1.1 Thesis overview 

For centuries, humans have expressed their appreciation for beauty. From Plato 

to Ruskin, philosophers have long theorised about the importance of aesthetics 

(Eco, 2004). Governments around the world value beautiful places, as evidenced by 

the protection of areas of outstanding natural beauty and the aesthetically-driven 

regeneration of deprived urban areas. Architects and designers often place 

emphasis on the aesthetics of what they create, not just the utilitarian function 

(Carmona, 2010). As individuals, we often seek out beautiful places when we want 

to lift our spirits, or simply to relax. 

However, until now, quantitative evidence supporting the argument that beautiful 

places are beneficial to human beings has been lacking. Thus, beauty is often 

considered to be a luxury that might be tackled only if resources allow (Harvey & 

Julian, 2015). Yet, what if beauty is actually an essential component of our lives? 

In 2010, the Commission for Architecture and the Built Environment (CABE), 

tasked with advising the UK government on architecture, urban design and public 

spaces, commissioned a thought-provoking study using the concept of “beauty” as 

a channel to engage people in a discussion about their local environment. The 

research was undertaken in Sheffield, a city undergoing extensive regeneration. 

Some notable excerpts from the study are as follows: 

 

Jack found it very difficult to experience beauty on the Park Hill estate where he 

lives. The threat of violence on Park Hill was a constant concern for him. That, in 

addition to the area visually appearing ugly to him made it difficult for him to 

experience beauty at home. In Park Hill, Jack described waking up and feeling 

like going back to bed so he doesn’t have to look at or think about his 

surroundings. (Ipsos MORI, 2010, p.39) 

 

When you’re surrounded by beautiful buildings, or something that looks 

extraordinary, straight away you’re more up about things. It’s a lovely thing that – 

just being able to pass by somewhere and feel better. It’s like seeing a nice tree 

or something beautiful in nature, it has the same effect. And that’s got to be  
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important for the general public – seeing something you like and feeling happier. 

(Ipsos MORI, 2010, p.42) 

 

While the definition of “beauty” varied from individual to individual, there was 

nonetheless strong agreement that the beauty of the environment had a profound 

effect on the respondents’ everyday lives, including their wellbeing. In fact, eighty 

per cent of those interviewed regarded beauty as a right, not just a luxury.  

What if there is economic value in creating and preserving beautiful places? If 

beautiful places are essential to our quality of life, can we still afford to think of 

beauty as just an afterthought? This PhD thesis attempts to build quantitative 

evidence to help answer the question: are beautiful environments associated with 

increased wellbeing?  

Why has evidence for the link between beautiful places and our wellbeing been 

lacking in the scientific literature thus far? Existing large-scale research that has 

looked into the influence of the environment on our wellbeing has been limited to 

aspects of the environment that have traditionally been feasible to measure, for 

example the percentage of green land cover using aerial footage; tree density and 

different types of land cover via satellite imagery; or population density via the 

census (e.g. White et al., 2013a; Kardan et al., 2015; Alcock et al., 2015). 

Measuring the beauty of an entire country through traditional survey methods would 

be a highly time-consuming and costly enterprise and thus, to date, most such 

research has been limited to small-scale local surveys or laboratory experiments 

using photographs of the environment (e.g. Bond et al., 2012a; Pretty et al., 2005) 

(See Chapter 2, Section 2.3 for a full review of the previous literature). 

In recent years, data generated through our increasing interactions on the 

Internet has begun to allow us to quantify aspects of the visual environment in 

which we live that were previously difficult to measure, yet may affect crucial 

aspects of our lives such as our wellbeing (Seresinhe, Preis & Moat, 2015). The 

vast quantity of geotagged images uploaded to the Internet provides a basis for 

gathering novel and comprehensive data on how humans perceive and interpret 

their natural and built environment (Antoniou, Morley & Haklay, 2010; De Nadai et 

al., 2016; Dunkel, 2015; Quercia, O’Hare & Cramer, 2014; Seresinhe, Preis & Moat, 

2015; Wood et al., 2013). Recent advances in computer vision methods, particularly 

in deep learning, have begun to allow us to extract information from images at a far 

greater speed than ever before (LeCun, Bengio & Hinton, 2015).  

For the research reported in this thesis, we exploit crowdsourced data from the 

online game Scenic-Or-Not, where respondents rate geotagged photographs taken 
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across the United Kingdom on the basis of how scenic they find them to be. 

Through this game, over 1.5 million ratings for photos of more than 200,000 1 km 

grid squares of Great Britain have been collected, producing national-scale 

measurements of environmental aesthetics of a kind not previously available to 

researchers. This new data source gives us the novel opportunity to not only 

evaluate the connection between scenicness and wellbeing, but also an extensive 

dataset with which to use deep learning to understand what beautiful places are 

composed of. 

Specifically, this research investigates the following questions: (1) How 

accurately can we algorithmically predict the beauty of scenes for which we do not 

have survey or crowdsourced scenicness data? (2) Is there a quantifiable 

connection between the beauty of the environment and people’s wellbeing? (3) Can 

we develop a broader understanding of what beautiful outdoor spaces are 

composed of? 

1.2 Thesis roadmap 

In Chapter 2, we review the existing literature related to investigating the 

connection between the environment and our wellbeing. We first review the different 

ways in which wellbeing is measured, in order to understand which aspects of 

wellbeing we might want to consider when exploring the connection between 

wellbeing and beautiful places. We also review existing literature to explore findings 

to date on how different aspects of the environment, from green space and blue 

space to natural versus urban environments, might contribute to increased 

wellbeing. As our methodology draws on various sources of data gathered online, 

we also explore existing research on how online data has been used to understand 

human behaviour. Finally, we present our previous study exploring the connection 

between beautiful places and reported health.  

While Scenic-Or-Not provides us with an initial map of scenic areas around Great 

Britain, studies that explore the benefits of scenicness might require scenicness 

measurements at a higher resolution, particularly in cities where the scenic beauty 

can vary extensively within each square kilometre. Thus, in Chapter 3 and 4, we 

explore different methods for estimating the scenicness of places for which we do 

not have existing data. In Chapter 3, we exploit crowdsourced data from the image 

sharing platform Flickr to investigate whether models including crowdsourced data 

can generate more accurate estimates of scenicness than models that consider 

only basic demographic measurements such as population density or whether an 
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area is urban or rural. In Chapter 4, we exploit recent advances in computer vision, 

specifically deep learning, to build an algorithm to predict scenicness at high 

resolution across the country.  

The connection between beautiful environments and our wellbeing might vary 

depending on what aspect of wellbeing we measure, such as our experienced 

everyday happiness or an evaluation of how satisfied we are with our lives. 

Therefore, in Chapter 5 and 6 we investigate the connection between scenic 

environments and different types of wellbeing: (1) our experienced wellbeing as 

measured though happiness ratings submitted via the mobile phone app Mappiness 

(Mackerron & Mourato, 2013), and (2) our evaluative wellbeing, specifically life 

satisfaction and mental distress, as measured through annual survey responses to 

The UK Household Longitudinal Study, Understanding Society (University of Essex, 

2017). 

Finally, we wish to understand how beautiful places might differ from merely 

natural environments. When we envisage beautiful environments, we often 

envisage stunning scenery abundant in nature. However, are beautiful 

environments simply natural environments? Or, can we uncover a broader definition 

of scenic beauty that might account for built-up elements as well? In Chapter 7, we 

again exploit deep learning methods to quantify what beautiful outdoor places are 

composed of. In Chapter 8, we explore how the definition of scenic beauty might 

differ in Rio de Janeiro, a setting remarkably different from Great Britain.  

Chapter 9 concludes this thesis with an overview of our main findings. We also 

note possible limitations of our research, discuss suggestions for future research, 

and discuss wider policy implications of our findings. 

1.3 Policy relevance 

This research could have significant implications for planning and development 

policy, including whether the aesthetics of the environment warrants investment. 

While current public policy does suggest that policymakers see some value in 

promoting beauty in wider infrastructure – as we see in the protection of natural and 

historical locations and the regeneration of deprived urban areas – these decisions 

are not based on robust evidence, and therefore risk the misallocation of public 

resources (Bakhshi, 2010). Furthermore, public policy often avoids addressing 

beauty that can be created locally in our everyday lives (Harvey & Julian, 2015). For 

example, while government departments readily promote the preservation and 

creation of green spaces (UK Parliamentary Office of Science and Technology, 
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2016), there is often very little guidance regarding their quality, and thus more 

deprived areas might be prone to have low-quality green spaces that have little 

appeal to local residents (Roberts-Hughes, 2013). Finally, in public policy, 

policymakers might be reluctant to engage with the concept of beauty explicitly, as 

beauty has long been considered an intangible measure that is difficult to quantify 

due to its subjective nature.  

In light of the above, we believe this research can inform public policy in the 

following ways: 1) Does beauty warrant investment? If we were to find a quantitative 

connection between beautiful places and wellbeing, then this could motivate 

governments to consider aesthetics in relevant public policies, such as the 

introduction of aesthetically pleasing green spaces. 2) Can we find a tangible 

definition of beauty by identifying features that we might find collectively beautiful, 

such as trees or certain aspects of built-up structures? It would make it easier for 

policymakers to address concepts of beauty in planning and development 

guidelines if such guidelines could be supported by clearer direction as to what 

makes something beautiful. 3) Can we successfully measure the beauty of the 

environment on a large scale? If so, we can help ease the process policymakers 

undergo in identifying areas that might be lacking in beauty and in need of 

infrastructure investment, due to the fact that this process can be implemented at 

large scale and at relatively low cost.  

Thus, this research will help policymakers make evidence-based assessments 

about what makes environments beautiful, thereby informing investment decisions 

and potentially helping to address countrywide inequalities in beauty. Empirical 

evidence on the connection between beautiful environments and human wellbeing 

is vital for informing policy choices in this area. 

1.4 Research contributions 

This thesis contributes to scientific research with the following technical and 

conceptual advances:  

1) A deep learning method to automatically infer the scenicness of images, 

such that this algorithm can be applied to new images for which 

crowdsourced scenic ratings have not been obtained. The ability to predict 

scenicness at a high resolution and for new areas has the potential to 

enable future social science research to investigate the connection between 

the beauty of the environment and various measures that might be important 

to us – from economic prosperity to physical health. 
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2) The first large-scale evidence demonstrating that the beauty of the 

environment, and not just whether it is natural or green, is quantitatively 

associated with people's everyday wellbeing. Crucially, the relationship we 

find holds not only in natural environments, but in built-up areas too, even 

after controlling for a range of factors such as the activity the individual was 

engaged in at the time, weather conditions, whether it was the weekend, and 

the income of local inhabitants. We argue that a focus on green space alone 

is misplaced and has come about due to previous lack of availability of 

large-scale data on the aesthetic quality of the environments we inhabit. 

3) A broader understanding of what beautiful outdoor places are composed of, 

based on the analysis of hundreds of features extracted from over 200,000 

images. Crucially, we demonstrate that the old adage ‘natural is beautiful’ 

seems to be incomplete: flat and uninteresting green spaces are not 

necessarily beautiful, while characterful buildings and stunning architectural 

features can improve the beauty of a scene.  
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Chapter 2 
A review of existing research 

2.1 Introduction 

In this chapter, we examine existing literature to determine what is already 

known about the connection between the environment and our wellbeing, and we 

also consider issues in measuring both the environment and wellbeing that should 

be taken into account in further research on this topic, such as the work presented 

in this thesis. 

There is unlikely to be one measure that can accurately capture wellbeing, as it 

is a multi-faceted notion composed of various elements, such as everyday 

happiness and life satisfaction. Therefore, we first explore the different ways in 

which wellbeing can be measured, in order to understand which aspects of 

wellbeing we might want to consider in this research. 

We also want to develop a better understanding of what aspects of the 

environment are connected with our wellbeing, and how these aspects might relate 

to beautiful environments. For example, there is ample research exploring the 

connection between natural places and our wellbeing. We want to understand not 

only if such research has been able to show if such a connection exists, but also if 

there might be gaps in the research where beautiful places might offer an insightful 

explanation.  

We also review previous studies that have attempted to explore the connection 

between beautiful places and our wellbeing, and consider the obstacles that 

previous researchers have faced in this endeavour. For example, such studies have 

had to rely heavily on local survey data, or data gained from people's responses to 

images of environments in laboratory settings, in order to understand people's 

preferences for different environments. However, crowdsourced data from the 

Internet is a valuable resource for gathering large-scale data on beautiful places. 

We therefore also explore to what extent crowdsourced data can provide useful 

insights into our preferences. We present an initial study we conducted prior to this 

thesis, where we explore the connection between beautiful places and reported 

health using a crowdsourced database of the beauty of Great Britain. 

Finally, as the broader goal of this research is to provide useful guidelines for 

urban planners and policymakers on how they might design spaces that best benefit 

human wellbeing, we explore to what extent we can quantify beautiful places. While 
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individual ideas of beauty might indeed be subjective to some extent, as they are 

shaped by our cultural, social and life experiences (Zube & Pitt, 1981; Zube, Pitt & 

Evans, 1983), we explore how previous research has attempted to understand our 

collective understanding of beauty.  

2.2 On measuring subjective wellbeing 

Interest in maximising human wellbeing has a long history, initially sparked by 

the utilitarian philosopher Jeremy Bentham, who advocated that we should strive for 

“the greatest happiness of the greatest number” (Bentham, 2005). For centuries 

however, the importance of wellbeing as a measure to evaluate the health of 

nations has largely been sidestepped in favour of economic measures of 

performance such as Gross Domestic Product (GDP). Interest in measuring 

wellbeing was only recently reignited, first in 2000 by the Organisation for Economic 

Co-operation and Development (OECD) who included in its mission the aim ‘to 

promote policies that will improve the economic and social wellbeing of people 

around the world’. This eventually led to the 'better life' initiative, a project that 

measures wellbeing across OECD countries (Allin & Hand, 2017). Later, the Stiglitz 

Commission report of 2009 as cited by Dolan & Metcalf (2012) stated: 

'Research has shown that it is possible to collect meaningful and reliable data 

on subjective as well as objective wellbeing. Subjective wellbeing encompasses 

different aspects (cognitive evaluations of one’s life, happiness, satisfaction, 

positive emotions such as joy and pride, and negative emotions such as pain and 

worry): each of them should be measured separately to derive a more 

comprehensive appreciation of people’s lives.'  

The Commission’s report not only claimed that subjective wellbeing is 

measureable, but also that it provides vital information for deciding the direction of 

social progress and public policy. Thus, measuring wellbeing has steadily grown in 

importance for policymakers, with governments initiating programmes to measure 

wellbeing. Notably, in 2010, the UK Prime Minister (Cameron, 2010) gave a speech 

on the importance of measuring wellbeing in Britain and emphasised the need to 

evaluate Britain's progress not only by how the economy is performing but also in 

terms of quality of life. 

While the importance of measuring wellbeing is clear to many, what is less clear 

is which measure accurately captures wellbeing. Research that aims to understand 

how we can improve our happiness and quality of life therefore often involves 

measuring several aspects of wellbeing. These include not only objective and 
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subjective measures, but also various elements of our subjective experience, 

including our emotions, experiences and judgements.  

The various aspects of our subjective wellbeing are thought to belong to the 

following three broad categories: (1) evaluative wellbeing – cognitive judgements on 

how someone might feel about something, e.g. “how satisfied are you with your 

life?”; (2) experienced wellbeing – the experience of emotions in an individual’s 

everyday life, e.g. “how happy are you right now?”; and (3) eudaimonic wellbeing – 

the sense of meaning or purpose in life, e.g. “to what extent do you feel the things 

you do in your life are worthwhile?”. The association of wellbeing with certain 

aspects of our lives might differ based on what type of wellbeing we are considering 

(Kahneman & Riis, 2005; O'Donnell et al., 2014; White et al., 2017). For example, in 

a study by Kahneman and Deaton (2010), the researchers found that positive affect 

(as measured by the amount of happiness, smiling and laughter) increased with 

income levels but only up to a certain point (~$75,000), whereas life evaluation can 

continue to increase steadily with increased income. White et al. (2013b) found that 

individuals report less mental distress when living nearer to the coast, but they did 

not find a similar association with life satisfaction. 

Time frames might also matter when measuring wellbeing. For example, the 

question “how happy are you right now?“ might elicit a completely different 

response to “how happy were you in the past two weeks?” or “how happy are you 

with life in general?”. Advocates of measuring experienced wellbeing argue that 

moment-by-moment records provide a less distorted picture of an individual's 

experiences (Hektner, Schmidt & Csikszentmihalyi, 2007; Kahneman et al., 2004), 

as unlike post-hoc questioning, such moment-by-moment records do not rely on 

people's recollections of their experiences, which are susceptible to biases 

(Redelmeier & Kahneman, 1996). Such biases include the peak/end rule and 

duration neglect: the finding that when people judge an experience as being 

pleasant or unpleasant, they appear to neglect the duration of the experience, but 

rather judge it based on how it felt at its peak and towards its end (Kahneman & 

Thaler, 2006). Others argue that studies based on evaluative questions where 

participants reflect on their wellbeing might reveal more stable preferences and 

provide more insight into how people actually make life decisions (Akay, Bargain & 

Jara, 2017; O’Donnell et al., 2014; Helliwell & Leigh, 2010). As there is 

disagreement in previous research about which measurements of wellbeing most 

accurately capture people's experiences, it might be useful to first understand how 

beautiful places might be connected with measurements of different aspects of 

wellbeing, such as experienced wellbeing and evaluative wellbeing. We can then 
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evaluate, based on which connections we discover, how we might want to interpret 

the usefulness of our results. For example, if we discover a connection between 

experienced wellbeing and beautiful places only, we might want to consider policy 

interventions that specifically target people's everyday wellbeing, such as visits to 

beautiful parks. However, if we discover a connection between evaluative wellbeing 

and beautiful places, we can then consider policy interventions such as designing a 

housing estate to be a more beautiful place for people to live in. 

2.3 On the connection between environment and wellbeing 

When understanding the connection between the environment and human 

wellbeing, researchers have often focused on aspects of our environments that 

have traditionally been feasible to measure at large scale, such as areas abundant 

in greenery (green space), large bodies of water (blue space) and natural versus 

urban habitats. Research regarding our exposure to greenery commonly involves 

measuring vegetated areas via satellite or aerial imagery, as in the Generalised 

Land Use Database (Department for Communities and Local Government, 2007) or 

counting the number of individual trees in an area. In terms of mental wellbeing, a 

higher proportion of green space is linked with reduced levels of stress (Thompson 

et al., 2012; van den Berg et al., 2010), less perceived depression (Triguero-Mas et 

al., 2015; de Vires et al., 2016) or anxiety (Triguero-Mas et al., 2015), less mental 

distress (as measured by the General Health Questionnaire, a screening device for 

identifying minor psychiatric disorders) (White et al., 2013a; Triguero-Mas et al., 

2015), and higher life satisfaction in urban areas (White et al., 2013a). Frequent 

visits to green spaces are associated with an increased feeling that activities in life 

are worthwhile (White et al., 2017). There is also evidence of a connection between 

green space and aspects of physical wellbeing such as self-reported health (de 

Vries et al., 2003; Kardan et al., 2015; Mitchell, Astell-Burt & Richardson, 2011; 

Mitchell & Popham, 2007; Maas et al., 2006; Triguero-Mas et al, 2015), more 

physical activity (Richardson et al., 2013; Ellaway, Macintyre & Bonnefoy, 2005), 

less likelihood of being overweight and obese (Ellaway, Macintyre & Bonnefoy, 

2005), all-cause mortality (Mitchell, Astell-Burt & Richardson, 2011), and reduced 

risk of cardiovascular diseases (Richardson et al., 2013). However, a study by 

Houlden, Weich and Jarvis (2017) found no evidence supporting an association 

between the amount of green space and multi-dimensional wellbeing (as measured 

by the Short Warwick Edinburgh Mental Well Being Scale, a tool focusing entirely 

on positive aspects of mental health). Furthermore, in the study by Mitchell and 
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Popham (2007), the authors found that greater amounts of green space correlate 

with higher rates of ill health in low-income suburban neighbourhoods. Mitchell and 

Popham (2007) suggested that the quality of the green space might matter as well 

as simply the quantity. The two studies (Houlden, Weich & Jarvis, 2017; Mitchell & 

Popham, 2007) indicate that the connection between green space and our 

wellbeing might be more complex, and other aspects such as the aesthetic quality 

of green spaces might also be important to consider. 

Researchers have also quantitatively explored the association between wellbeing 

and blue spaces – environments where water is the central feature, such as a coast 

or river – and the results are mixed. There is some evidence supporting the link 

between coastal and salt-water areas and physical wellbeing, as measured by self-

reported health (Wheeler et al., 2012, 2015; White et al., 2013b). However, although 

Triguero-Mas et al. (2015) found significant positive associations between green 

space and several measures of wellbeing, they did not find evidence of an 

association between blue space and mental distress, perceived depression or 

anxiety, or self reported health. On the other hand, De Vires et al. (2016) did find a 

significant association between blue space and less perceived depression or 

anxiety. White et al. (2013b) did find a connection between coastal areas and 

reduced mental distress, but they did not find an association between coastal areas 

and life satisfaction. Beautiful coastlines and scenic lakes are a popular draw for 

visitors and they clearly have some beneficial effects for people's mental wellbeing, 

but the lack of evidence for a connection between blue space and wellbeing in both 

White et al. (2013b) and Triguero-Mas et al. (2015) is intriguing. Could this 

discrepancy point to the importance of the aesthetic quality of those blue spaces? 

Perhaps certain types of blue spaces have the ability to improve our wellbeing while 

others do not.   

Researchers have also investigated the role the environment plays in our 

wellbeing by exploring the differences in wellbeing in natural versus urban 

environments, as commonly measured through land cover data complied via 

satellite imagery such as CORINE. Natural environments have been associated 

with reduced anxiety and negative thoughts (Bratman et al., 2015a; Bratman et al., 

2015b) and increased happiness (Mackerron & Mourato, 2013). Natural settings 

may have a restorative effect, thus helping us feel less mentally fatigued after 

spending time exposed to them (Hartig, Mang & Evans, 1991; Hartig et al., 1997; 

Herzog et al., 2003; Kaplan & Kaplan, 1989). Researchers have also discussed the 

link between affect and the environment (Hull & Harvey, 1989; Kaplan, 1987; 

Sheets & Manzer, 1991; Ulrich, 1983; White et al., 2010) – the environment’s 
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aesthetic role to move people emotionally may be central to explaining its 

restorative power. For example, Ulrich et al. (1991) found that when people were 

exposed to a stressful experience – a stressful movie in the case of this study – 

individuals who then viewed natural rather than urban scenes were able to recover 

faster from stress. The authors' hypothesis is that the subjects' emotional reactions 

to the natural settings aided recovery from stress.  

However, such studies have not attempted to explore the role that the beauty of 

natural environments might have in increasing wellbeing. Intuitively it seems that a 

beautiful coastal view has greater ability to increase our wellbeing than a desolate 

field. Studies that have been restricted to using straightforward geographic 

datasets, such as distances to parks or coastal areas, tree density, and land cover 

categories, can only provide part of the picture of how the environment has an 

influence on our wellbeing. Thus, a missing component still remains: a better 

understanding of how the aesthetic quality of these environmental factors might 

influence our wellbeing. 

2.4 Initial investigations of the connection between scenic beauty and 

wellbeing 

In the past, research into understanding the relationship between beautiful 

scenes and our wellbeing has been limited to using proxy data on beautiful 

environments, for example comparing responses to nature vs. urban window 

scenes, such as views of deciduous trees versus a brown brick wall (Ulrich, 1984), 

looking at beautiful images in a laboratory setting, or local surveys on the beauty of 

the environment.  

Studies of people viewing nature from windows, compared to viewing typical 

urban settings, have suggested that natural window views are associated with faster 

recovery from surgery (Ulrich, 1984), reduced stress and increased mental 

restoration (Ulrich et al., 1991), better attentional capacities in undergraduate 

dormitory residents (Tennesen & Cimprich, 1995), increased residential wellbeing 

and satisfaction (Kaplan, 2001), as well as increased employee wellbeing (Gilchrist, 

Brown & Montarzino, 2015). While many natural views might also be considered to 

be beautiful, these studies do not directly investigate the role beauty itself might 

play in our wellbeing. 

Initial, albeit small scale, evidence on the connection between beautiful 

environments and our wellbeing comes from laboratory experiments and local 

surveys. Participants exposed to photographs of beautiful natural scenery while 
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exercising on a treadmill (Pretty et al., 2005) reported increased levels of mood, 

comfort, excitement, tranquillity and safety, as well as less boredom (Galindo & 

Rodriquez, 2000). Participants tend to report higher affect (increased feelings of 

happiness) when exposed to images that they also find aesthetically pleasing 

(White et al., 2010). However, It could also be argued that emotional reactions to 

environmental scenes in everyday life may differ from person to person. 

Analyses using survey data suggest that attractive settings are associated with 

increased mental wellbeing (Bond et al., 2012a) and might encourage us to engage 

in more physical activity (Ball et al., 2001). While these studies are promising in that 

they explore beauty found in scenes in everyday life, in the Ball et al. (2001) study, 

when claiming to measure the aesthetic nature of the local environment, they 

combine perceptions of attractiveness (measured by feedback scores for the 

statement “Your local area is attractive”) with perceptions about non-visual elements 

of the environment (measured by scores for the statements “Your neighbourhood is 

friendly” and “You find it pleasant walking near your home”). Thus it is not clear 

which statements are driving the connection between their measure of 

environmental aesthetics and physical activity. Furthermore, the Bond et al. (2012a) 

study only covers 15 deprived areas of Glasgow and so may not provide a 

comprehensive view of how beautiful environments impact our wellbeing. 

However, in all these studies, other than the study reported by Pretty et al. 

(2005), the photographs or neighbourhoods used in these studies were rated for 

attractiveness by the same person reporting their mood, such that aesthetic and 

emotional responses may be difficult to disentangle.  

Thus, these studies have not been able to explain confounding results 

sometimes found in large-scale studies exploring the connection between 

environment and wellbeing, such as the Mitchell and Popham (2007) study that 

found the surprising result that greater green space is correlated with higher rates of 

ill-health in low-income suburban neighbourhoods. If we were able to measure the 

quality of our environment on a large scale, this would help develop a broader 

understanding of how the beauty of environments, not just the availability of nature, 

has an impact on our wellbeing. 

2.5 Using online data to understand human behaviour 

The ubiquitous presence of the Internet in today’s society has led to the creation 

of a new source of information on human behaviour: large datasets generated from 

online activity. Data generated through our increasing online interactions with 



 25 

platforms such as Google (Choi & Varian, 2012; Curme et al., 2014; Ginsberg et al., 

2009; Kristoufek, Moat & Preis, 2016; Letchford, Preis & Moat, 2016; Moat et al., 

2014, 2016; Noguchi et al., 2014; Preis et al., 2012; Preis, Moat & Stanley, 2013; 

Preis & Moat, 2014, 2015), Wikipedia (Moat et al., 2013), Facebook (Bakshy, 

Messing & Adamic, 2015; Bond et al., 2012b), Flickr (Alanyali, Preis & Moat, 2016; 

Barchiesi et al., 2015a, 2015b; Preis et al., 2013; Wood et al., 2013; Zhou et al., 

2014), Twitter (Bollen, Mao & Zeng, 2011; Botta, Moat & Preis, 2015), and online 

news providers (Alanyali, Moat & Preis, 2013; Curme et al., 2017) have led to a 

range of new insights into human behaviour in the real world (King, 2011; Lazer et 

al., 2009; Moat et al., 2014; Watts, 2007).  

Of particular interest are the studies by Wood et al. (2013) and Zhou et al. 

(2014). The study by Wood et al. (2013) leverages social media activity to track 

demand for recreational sites around the world. The authors specifically predict the 

number of visits to 836 recreational sites around the world using geotagged images 

uploaded to Flickr, the online photograph-sharing platform. They uncover 

relationships between measurements of the number of visits to a given attraction 

and the number of photographs taken at each site, and find that data on the 

originating country of each photographer may also relate to data on the origin of 

visitors. Similarly, Zhou et al. (2014) exploited geotagged images uploaded to Flickr 

and, through image analysis, extracted city attributes such as “green space”, 

“transportation” and “architecture” to characterise the identity of a city. 

In our own study “Quantifying the link between art and property prices in urban 

neighbourhoods” (Seresinhe, Preis & Moat, 2016), we explored how online data can 

be used to quantify aspects of the visual environment that have previously been 

difficult to measure, in this case the presence of art in a city over time. The 

Economist (2000) article “The Geography of Cool” discusses how artists have been 

changing the economic landscape of London – from James Whistler and Oscar 

Wilde in Chelsea to the 1990s “Britart” movement in Hoxton. While the popular 

media and policymakers commonly believe that art plays a central role in the 

transformation of deprived urban neighbourhoods, quantitative evidence for this has 

generally remained lacking. 

In Seresinhe, Preis & Moat (2016), we used metadata of geotagged photographs 

uploaded to the popular image-sharing platform Flickr to quantify the association 

between art and the relative gain in residential property prices for each Inner 

London neighbourhood. We estimated the presence of art in neighbourhoods by 

determining the proportion of Flickr photographs with the word ‘art’ attached. We 
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found that neighbourhoods that have a higher proportion of mentions of “art” 

associated with Flickr photographs also have greater relative gains in house prices. 

Our findings demonstrate how online data can indeed be used to quantify aspects 

of the visual environment in which we live that were previously difficult to measure.  

Online games have also been shown to be a valuable resource for 

crowdsourcing perceptions of a city in high volume (Naik et al., 2014; Salesses, 

Schechtner & Hidalgo, 2013; Quercia, 2013). For example, in the online game 

Place Pulse 1.0 (Salesses, Schechtner & Hidalgo, 2013), respondents are asked to 

select between pairs of images for questions such as “Which place looks safer?” or 

“Which place looks more upper-class?”. This game has crowsdourced over 200,000 

votes for 4,136 images for New York, Boston, Linz and Salzburg. 

2.6 The first large-scale study exploring the connection between beautiful 

places and our wellbeing 

Using crowdsourced ratings of the beauty of the environment, we conducted the 

first large-scale study to explore the connection between beautiful places and 

people's reported health. In our study “Quantifying the Impact of Scenic 

Environments on Health” (Seresinhe, Preis & Moat, 2015) we asked: might the 

aesthetics of our environment have a measurable impact upon our health?  

We drew on data from Scenic-Or-Not (http://scenic.mysociety.org), a website that 

crowdsources ratings of “scenicness” for geotagged photographs. Scenic-Or-Not 

presents users with random geographically-tagged and mainly eye-level 

photographs of Great Britain, which visitors can rate on an integer scale of  

1 – 10 (10 indicating “very scenic” and 1 indicating “not scenic”). The entire dataset 

contains 217,000 images, sourced from Geograph (http://www.geograph.org.uk), 

covering nearly 95% of the 1 km grid squares of Great Britain.  

We combined this with citizen-reported health data from the Census for England 

and Wales 2011 (Office for National Statistics, 2012). In order to control for 

socioeconomic characteristics that may be linked with reported health, we used 

deprivation data from the 2010 English Indices of Deprivation (Department for 

Communities and Local Government, 2011) in order to take account of the fact that 

health may be associated with the following characteristics: income, employment, 

housing, education, crime and living conditions. We also explored whether there is 

any variation in the association between reported health and scenicness across 

urban, suburban and rural areas. 
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Figure 2.1 Scenicness, green space and health in England. 
(a) We depict green space, using Generalised Land Use Database 2005 green land cover 
data, at the level of English Lower Layer Super Output Areas (LSOAs) with quantile breaks. 
(b) We calculate the average scenic rating of all Scenic-or-Not photographs taken in each 
LSOA and depict these ratings using quantile breaks. (c) Respondents to the 2011 Census 
for England and Wales classified their health as “Very good or good”, “Fair” or “Bad or very 
bad”. We calculated health rates using the Standardized Morbidity Ratio (SMR), which is the 
ratio of the observed to the expected number of cases of bad health for a particular 
population, taking the age and gender of inhabitants into account. We depict the SMR for 
each LSOA using quantile breaks. (d) To determine which model provides the best fit for 
predicting poor health, we calculate Akaike weights (AICw), which can be used to interpret 
the probability of each model given the data. Contains National Statistics, NISRA, NRS and 
Ordnance Survey data © Crown copyright and database right 2013. 

 

d

c

PO
O

R 
H

EA
LT

H

Average rates of 
poor health (SMR)

0   0.5    0.6    0.7    0.8   0.9    1.2   3.2

London

Birmingham

Manchester

Newcastle

Liverpool

Average percentage
of greenspace

0  0.3   0.6    0.7    0.9  0.94  0.96  0.99

Average scenic rating

1   2.2   3.1   3.6   3.9   4.2   4.6    8

G
RE

EN
SP

A
CE

SC
EN

IC
N

ES
S

a b

0.00

0.25

0.50

0.75

1.00

All areas Urban Suburban Rural

Pr
ob

ab
lit

y 
of

 th
e 

m
od

el
 g

iv
en

 th
e 

da
ta

 (A
IC

w
)

Model
Scenicness only
Greenspace only
Scenicness and Greenspace



 28 

 

Across the entire English dataset, we found that inhabitants of more scenic 

environments report better health (β = -0.008, N = 16,907, p < 0.001), even when 

taking a wide range of deprivation variables into account. This relationship holds 

across all urban categories (Urban: β = -0.007, N = 3,944, p = 0.012; Suburban: β = 

-0.005, N = 7,781, p = 0.007; Rural: β = -0.012, N = 5,182, p < 0.001).  

As several studies have indicated that an abundance of green space results in 

increased human wellbeing (de Vries et al., 2003; Ellaway, Macintyre & Bonnefoy, 

2005; Maas et al., 2006; Mitchell & Popham, 2007; Mitchell & Popham, 2008; van 

den Berg et al., 2010; Sugiyama et al., 2008; White et al., 2013a), we also 

evaluated to what degree scenicness relates to objective measurements of green 

land cover obtained from aerial imagery. The relationship between scenicness (Fig. 

2.1a) and green land cover (Fig. 2.1b) is apparent upon inspection of the two maps, 

and indeed scenicness and green land cover are significantly correlated (β = 0.2, N 

= 128,213, p < 0.001, Kendall’s rank correlation). However, the correlation is not 

very strong in terms of effect size, suggesting that scenicness and green land cover 

are not necessarily the same. For example, in the East of England, green land 

cover and scenicness diverge considerably.  

We therefore investigated to what extent geographic differences in health (Fig. 

2.1c) can be explained by scenicness and green space. In all cases, we found that 

there is more evidence for models that include scenicness than for the model with 

only green space (Fig. 2.1d). Our results provide initial evidence in line with the 

striking hypothesis that the aesthetics of the environment has a quantifiable 

connection to human wellbeing.   

2.7 What might beautiful environments be composed of? 

We have linked scenic beauty to reports of better health (Seresinhe, Preis & 

Moat, 2015). We have also shown that geographic differences in health can be 

better explained by models that include measurements of scenicness than by 

models that use measurements of green space only. But what are these beautiful 

spaces actually composed of and how might this differ from green space?  

People typically equate beautiful places with natural places. The presence of 

nature has been far easier to measure and often thought to be the one universal 

feature that we can collectively agree on as being beautiful, usually explained with 

reference to the ‘biophilia hypothesis’ which suggests that evolutionary pressures 

have led to a human preference for a connection with nature (Kellert & Wilson, 
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1995). Our love of tree-rich landscapes might be driven by the fact that trees have 

long provided our antecedents with respite against the sun and rain, or protection 

from predators (Joye, 2007; Orians & Heerwagen, 1992). However, there is reason 

to believe that natural elements have not purely been a positive force in our lives 

(Ulrich, 1993). 

There might be other general aspects of the environment that have driven our 

evolutionary preferences. Appleton's prospect and refuge theory (Appleton, 1975) 

argues that humans have involved to prefer environments where one can easily 

survey “prospects” or seek “refuge” to avoid possible dangers. This concept has 

been partially supported by empirical evidence demonstrating our preference for 

scenes with prospects, while the evidence supporting our preference for scenes 

with refuge is still unclear (Dosen & Ostwald, 2016). 

We also seem to prefer scenes that have a moderate degree of complexity, as 

they might hold our interest for longer (Ulrich, 1983; Kaplan, Kaplan & Wendt, 1972; 

Kaplan & Kaplan, 1989; Nasar, 1994). However, the relationship between 

complexity and aesthetic preference is thought to follow an inverted U-shaped curve 

(Berlyne, 1971), where scenes with too much information might overwhelm the 

visual system, making them difficult to process, and thus aesthetically displeasing 

(Reber, Schwarz & Winkelman, 2004). There is also some evidence that we prefer 

scenes with order (Kaplan & Kaplan, 1989), repeated visual patterns (Alexander, 

1977) and symmetrical forms (Enquist & Arak, 1994). The theories above underline 

the idea that beautiful environments may not be entirely synonymous with natural 

environments, and if we want to understand how to build environments that benefit 

our wellbeing, we might require a more in-depth understanding of what makes an 

environment beautiful. 

2.8 Discussion 

A review of previous literature related to the topics covered by this thesis has 

revealed that in order to understand the connection between scenic beauty and our 

wellbeing, we will need to consider different aspects of our wellbeing. These 

aspects include our experienced wellbeing, such as everyday happiness, and our 

evaluative wellbeing, such as life satisfaction. Prior research exploring the 

connection between the environment and our wellbeing has made a sizeable 

contribution to our knowledge. However, as a majority of these studies have been 

restricted to using datasets where geographic features can be easily measured 

(such as amounts of green space or distances to coastal areas), or have been 
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mainly laboratory-based small-scale studies, we still lack a large-scale 

understanding of how the beauty of the environment might be connected to our 

wellbeing.  

As we can now measure the beauty of environments using data readily available 

on the Internet, we now have the opportunity to investigate the connection between 

beautiful environments and our wellbeing at an unprecedented scale. Finally, we 

have also discovered that the definition of beautiful environments might be more 

complex than the common explanation that only natural environments provide 

beauty. Thus, if we are to find a connection between beauty and our wellbeing, we 

might also be in a position to provide useful insights to urban planners and 

policymakers tasked with designing places that enhance people’s lives. 
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SECTION I 
Can we predict the scenicness of new places?  

 
To date, measuring scenic beauty on a large scale, 

such as an entire country, has been a difficult 

endeavour. Typically, such data has been gathered 

through traditional survey methods, which are 

costly and time-consuming. The following two 

sections explore different methods for estimating 

the scenicness of places for which we do not have 

existing scenic ratings. These include the 

exploitation of crowdsourced data from the image-

sharing platform Flickr, as well as new computer 

vision techniques such as deep learning. 
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Chapter 3 
Predicting scenic ratings using crowdsourced 
data from Flickr 

3.1 Introduction 

Does living in picturesque areas improve people’s wellbeing? Philosophers, 

psychologists, urban planners and policymakers have deliberated over this question 

for years, but have been hindered by the lack of data on the beauty of our 

environment. For many years, it has been possible to obtain large-scale datasets of 

objective measures of the environment, such as distances to parks or coastal areas, 

proportion of green land cover, and population density. However, time-consuming 

and costly large-scale surveys have been the only method of eliciting information 

about people's perceptions of their environment. While more automated methods of 

eliciting beauty of the environment using data from Geographic Information Systems 

(GIS) are promising (Bishop and Hulse, 1994; Grêt-Regamey et al., 2007; Palmer, 

2004; Schirpke et al., 2013), to date, these analyses have been carried out only on 

a small scale, possibly due to a reliance on survey data to validate their findings. 

However, the ubiquitous presence of the Internet in today’s society has led to 

new source of data on our preferences and perceptions: the vast quantity of 

crowdsourced data openly shared on the Internet. Increasingly, this online activity is 

being geographically tagged, which has already lead to a range of fascinating 

insights into our interactions with our surrounding environment (Batty, 2013; Botta et 

al., 2015; Casalegno et al., 2013; Dunkel, 2015; Dykes et al., 2008; Girardin et al., 

2008; Gliozzo et al., 2016; Goodchild, 2007; Graham & Shelton, 2013; Haklay et al., 

2008; King, 2011; Lazer et al., 2009; Moat et al., 2014; O’Brien et al., 2014; Preis et 

al., 2013; Seresinhe, Preis & Moat, 2015, 2016; Stadler et al., 2011; Sui et al., 2013; 

Tenerelli et al., 2016; Vespignani, 2009; Wood et al., 2013; Zaltz Austwick et al., 

2013). 

In our past research exploring the connection between beautiful places and 

people's reported health (Seresinhe et al., 2015), we used data from such a source: 

crowdsourced data from Scenic-Or-Not, a website that collects ratings of 

scenicness for 1 km grid squares of Great Britain. The volume of Scenic-Or-Not 

ratings is considerable: to date, over 1.5 million ratings have been collected for over 
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200,000 locations in the UK. However, if it were possible to measure scenicness on 

a global scale, what might this reveal about wellbeing around the world?  

Photographs uploaded to image sharing websites such as Flickr cover a much 

greater area at greater density than our Scenic-Or-Not dataset. In this chapter, we 

begin to investigate whether data from Flickr could be used to estimate scenicness 

ratings for any location, without the requirement of gathering new Scenic-Or-Not 

ratings. Geotagged Flickr images have already been shown to be of value in 

identifying people's preferences for specific places (Girardin et al., 2008; Gliozzo et 

al., 2016; Tenerelli et al., 2016; Wood et al., 2013). We envisage that we might be 

able to capture the scenicness of an area through Flickr data, as people might 

share more photos of places they find to be picturesque, or may reveal the 

scenicness of an area through descriptions they add to images. 

We also explore data from OpenStreetMap, an editable Wiki world map created 

by thousands of volunteers (Haklay, 2010; Neis et al., 2012), from people with local 

knowledge to GIS professionals. We ask whether images uploaded to Flickr, 

combined with crowdsourced geographic data from OpenStreetMap, can help us 

determine which geographic areas people consider to be scenic.  

We build a base model to estimate how scenic an area is using measures of 

population density, number of residents, and urban, suburban or rural categories. 

We then explore to what extent crowdsourced data from Flickr and OpenStreetMap 

can help improve our base model. We identify which crowdsourced variables can 

add power to our model using a statistical learning method. Finally, we investigate 

whether models including crowdsourced variables can generate more accurate 

estimates of scenicness than our base model comprising measurements of 

population and area category alone. The research reported in this chapter was 

published in Seresinhe, Moat and Preis (2017). 

3.2 Data and methods 

Census and environment data 

In our base model, we investigate whether data on population density, number of 

residents, and urban, suburban or rural categories can be used to estimate 

scenicness. 

Data on population density and number of residents has been extracted from the 

2011 Census for England and Wales (Office for National Statistics, 2012) and 

Scotland's Census 2011 (National Records of Scotland, 2012). We conduct our 

analyses on the level of Lower Layer Super Output Areas (LSOAs), which are 
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defined by the Office for National Statistics for statistical analyses. LSOAs are 

geographic areas ranging from 0.018 to 684 square km, containing between 983 

and 8,300 residents (1,500 on average). 

We use data on urban and rural classifications of LSOAs (Office for National 

Statistics, 2013; Scottish Government, 2012) to explore the role urban, suburban or 

rural classification might play in the scenicness of an area. For the purposes of this 

study, “urban” LSOAs in England and Wales are defined using the category “Urban 

Major Conurbation” (Office for National Statistics, 2013). The remaining urban 

categories are deemed suburban. “urban” LSOAs in Scotland are defined using the 

category “Large Urban Areas” and “suburban” LSOAs are defined using the 

categories “Other Urban Areas”, “Accessible Small Towns” and “Remote Small 

Towns” (Scottish Government, 2012). 

 

Flickr and OpenStreetMap data 

In our extended models, we include measures derived from all publicly available 

Flickr photographs uploaded in 2013 that were geotagged as being located in Great 

Britain. Data on Flickr images was retrieved from Flickr's Application Programming 

Interface (https://www.flickr.com/services/api/flickr.photos.search.html) throughout 

2014. In order to ensure that the photographs were taken outdoors, we exclude 

images that were taken in buildings using crowdsourced data from OpenStreetMap. 

OpenStreetMap data on Buildings, Points of Interests and Natural Points of Interest 

was retrieved from GeoFabrik (http://www.geofabrik.de), where data was last 

updated on 20 July 2016.   

From the 3,549,000 Flickr images we have available for our analysis, we identify 

427,727 images located inside buildings and exclude them from our analysis. 

However, it is possible that the data from OpenStreetMap does not always correctly 

identify building locations. For example, Zielstra et al. (2013) and Haklay (2010) 

observe that the OpenStreetMap road network data might not always be complete. 

We therefore test a random sample of 10,000 images to gain further insight into 

whether they are taken in outdoor locations using the Places Convolutional Neural 

Network (CNN) (Zhou et al., 2014). The Places CNN has been trained on around 

2.5 million images to detect 205 scene categories. The labels of the top five 

predicted place categories can be used to check if a given image was taken indoors 

or outdoors, with more than 95% accuracy (Zhou et al., 2014). Using this method, 

we find that 23% of images classified as being outdoors using the OpenStreetMap 

building data are classified as indoor images using Places CNN. When we evaluate 

image classifications in urban, suburban and rural areas separately, we find more 
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mismatches between the OpenStreetMap and Places CNN classifications in urban 

and suburban areas than in rural areas. In urban areas, 35% of images classified as 

outdoor using OpenStreetMap data are classified as indoor using Places CNN. In 

suburban areas, the corresponding figure is 24%, in comparison to 14% in rural 

areas. We discuss the potential implications of this classification mismatch in the 

Discussion section. 

 

Scenic-Or-Not data 

 

 
Figure 3.1. The Scenic-Or-Not voting screen.  
Scenic-Or-Not presents users with random geotagged photographs of Great Britain, which 
visitors rate on an integer scale 1 – 10, where 10 indicates “very scenic” and 1 indicates “not 
scenic”. Each image, sourced from Geograph (http://www.geograph.org.uk), represents a 1 
km grid square of Great Britain. The Scenic-Or-Not database has over 217,000 images 
covering 92.5% of the 234,429 land mass 1 km grid squares of Great Britain. 
 

We use data from Scenic-Or-Not to determine how accurately our model using 

Flickr and OpenStreetMap data is able to predict scenic areas. Scenic-Or-Not 

presents users with random geotagged photographs of Great Britain, which visitors 

can rate on an integer scale 1 – 10, where 10 indicates “very scenic” and 1 

indicates “not scenic” (Fig. 3.1). Each image, sourced from Geograph 

(http://www.geograph.org.uk), represents a 1 km grid square of Great Britain. The 

Scenic-Or-Not database has over 217,000 images covering 92.5% of the 234,429 

land mass 1 km grid squares of Great Britain. We retrieved data on scenicness 

ratings by accessing the Scenic-Or-Not website (http://scenic.mysociety.org) on 2 
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August 2014, obtaining over 1.5 million ratings. We only include images in our 

analysis that have been rated more than three times. For this analysis, we 

aggregate these ratings on the level of LSOA.  

 

Identifying scenic images 

When uploading images to Flickr, photographers commonly choose to include 

additional textual data such as a title, description and tags (e.g. ‘scenic’, ‘sky’, ‘city’) 

to describe the image. We attempt to determine which images could be considered 

scenic by evaluating this textual data associated with each Flickr photograph. We 

deem a photograph to be scenic if there is a mention of “scenic” or a similar word in 

this textual metadata. 

To determine which words we should consider as similar to “scenic”, we build a 

word2vec model. A word2vec model is constructed by processing a large corpus of 

text in order to build a representation of the semantic meaning of each word on the 

basis of the contexts in which it appears. Here, we process the full Wikipedia corpus, 

using the latest data as of 14 July 2016 (retrieved from 

https://dumps.wikimedia.org/enwiki/latest/). Having constructed this model, we are 

able to query it in order to identify words that have a similar meaning to any word of 

interest, such as “scenic”. We classify a word as being similar if the similarity 

between the words is more than 0.5, according to the constructed word2vec model. 

We first search for words similar to “scenic”, for which three words are returned: 

“picturesque”, “scenery” and “hiking”. We then search again for these three words to 

identify further similar words, whereby the model returns words such as 

“birdwatching”, “landscape” and “unspoilt”. Table 3.1 lists all the words identified by 

this approach. 

In order to identify images that the textual information suggests might be scenic, 

we search the title, description and tags of each image using a regular expression 

for the word “scenic” (e.g. \bscenic\b) and, separately, for the word “scenic” or 

words similar to “scenic” (e.g. \b(scenic|picturesque|birdwatching|landscape)\b). The 

expression “\b” allows us to search for whole words only. In this process, we count 

only a single occurrence of “scenic” (or a word similar to “scenic”) even if it has 

“scenic” (or a word similar to “scenic”) mentioned several times in the metadata. We 

then have two different measures for each image: (1) whether the textual data 

mentions “scenic”, or (2) whether the textual data mentions “scenic” or a word 

similar to “scenic”. 
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Table 3.1. Identifying words similar to “scenic”. 
To determine which words we should consider as being similar to “scenic”, we build 
a word2vec model. The table below lists all words we identify with this approach. 
 

Words identified as similar to “scenic” 

backdrops quaint 

backpacking riverway 

birdwatching rustic 

breathtaking sceneries 

bucolic scenery 

bushwalking snowmobiling 

gorge snowshoeing 

greenery surroundings 

hikers tourist 

hiking trails 

hillwalking tranquil 

idyllic trekking 

landscape unspoiled 

landscapes unspoilt 

parks vistas 

picnicking wilderness 

picturesque  

  

Estimating scenic areas 

We build a base model to help us determine how scenic an area is, using the 

measures of population density, number of residents, and urban, suburban or rural 

categories.  

When working with spatial data, it is reasonable to assume that observations in 

neighbouring areas may be more or less alike simply due to their proximity, and 

hence exhibit autocorrelation (Bivand et al., 2013; Harris et al., 2005). We confirm 

this by first running a Moran’s I test, which measures whether spatial autocorrelation 

is present in the data. Due to this autocorrelation, we cannot run a simple linear 

regression analysis, as spatial dependencies would exist in the error term. Hence, 

we run our analysis using a conditional autoregressive model (CAR), as detailed 

below. 

We then explore to what extent crowdsourced data from Flickr and 

OpenStreetMap can help improve our base model. We identify which crowdsourced 

variables can add power to our model using a statistical learning method, as 

explained below.  
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Finally, we investigate whether models including crowdsourced variables can 

generate more accurate estimates of scenicness than our base model comprising 

measurements of population and area category alone, by comparing the Akaike 

weights of each model. 

 

Conditional Auto Regressive (CAR) model 

Initially proposed by Besag and colleagues (Besag, 1974; Besag et al., 1991), 

the CAR model captures spatial dependence between neighbours through an 

adjacency matrix of the areal units. 

The CAR model quantifies the spatial relationship in the data by including a 

conditional distribution in the error term ei. The conditional distribution of ei is thus 

represented as: 

 
where e-i  is the vector of all the errors terms except for itself; ej~i is the e-i vector 

including only neighbouring areas of i; and cij are dependence parameters used to 

represent the spatial dependence between the areas. 

 

Using statistical learning to identity candidate variables 

We use the statistical learning method of cross-validation (Hastie et al., 2009; 

James et al., 2013) to identify candidate variables to use in our scenic estimation 

models using crowdsourced data. We randomly partition the observations in our 

data set into a 60/40 split where 60% of the data is used as the training set and 

40% of the data is used as the validation set. We ensure that each partitioned 

dataset has an equal split of urban, suburban, and rural areas. We fit new models 

on the training dataset including all the variables in our base model (population 

density, number of residents, and urban, suburban or rural categories) plus every 

combination of all the crowdsourced variables we have identified, as listed in Table 

3.2. We then fit these models to estimate responses for the observations on the 

validation set. We then compare the resulting validation test error rates, as 

measured by Root Mean Square Errors (RMSE). We choose two candidate models 

for estimating scenicness by choosing those with the lowest RMSEs. 
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Table 3.2. Crowdsourced variables considered in our analysis. 
 

Variable  Method used to calculate measures 
photos Number of Flickr Photographs taken per LSOA 
photographers Number of Flickr Photographers per LSOA 

photos.pop Number of Flickr Photographs divided by Population Density 
per LSOA 

photographers.pop Number of Flickr Photographers divided by Population Density 
per LSOA 

photos.hec Number of Flickr Photographs divided by area of LSOA 
measured in hectares 

photographers.hec Number of Flickr Photographers divided by area of LSOA 
measured in hectares 

photographers.POI Number of Flickr Photographers divided by number of POIs per 
LSOA 

photographers.natural Number of Flickr Photographers divided by number of natural 
POIs per LSOA 

photos.POI Number of Flickr Photographs divided by number of POIs per 
LSOA 

photos.natural Number of Flickr Photographs divided by number of natural 
POIs per LSOA 

photos.travel Number of Flickr Photographs taken by travel photographers 
per LSOA 

photographers.travel Number of Flickr Travel Photographers per LSOA 
photos.scenic Number of images with the word “scenic” per LSOA 

photos.scenic.similiar Number of images with the word “scenic” or similar word to 
“scenic” per LSOA 

photos.scenic.prop Number of Flickr images with the word “scenic” divided by 
number of Flickr images uploaded per LSOA 

photos.scenic.similiar.prop Number of images with the word “scenic” or similar word to 
“scenic” divided by number of Flickr images per LSOA 

 
Akaike weights (AICw) 

In order to determine which model best estimates scenicness, we first calculate 

the AIC (Akaike Information Criterion) values for each model. AIC values help us to 

determine the likelihood of each model for a given set of data. The best model is the 

one that has the lowest AIC value. To help interpretation, we also calculate the 

Akaike weights (AICws), following the method proposed by Wagenmakers and 

Farrell (2004), as the AIC values themselves are difficult to interpret on their own. 

We derive AICws by first identifying the model with the lowest AIC. For each model, 

we then calculate an AIC difference, by determining the difference between the 

lowest AIC and the model's AIC. We next determine the relative likelihood of each 

model, following the method described in Wagenmakers and Farrell (2004). To 

determine the AICws, we normalise these likelihoods, such that across all models 

they sum to one. The resulting AICws can be interpreted as the probability of each 

model given the data.  
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3.3 Results 

A comparison of the quantity of Flickr photographs taken (Fig. 3.2a) with a map 

of scenic ratings of images from Scenic-Or-Not (Fig. 3.2b) indicates that areas with 

a high density of photos – which tend to be highly-populated areas such as London 

and Manchester – are rated as being the least scenic. On the other hand, highly 

scenic areas, such as Scotland, have a low density of Flickr photographs taken. 

This indicates that population density may be a significant factor for estimating the 

scenicness of an area.  

This also leads us to suppose that whether an area is urban, suburban or rural 

may also play a part in scenic ratings. Furthermore, Scotland, which is rated as 

highly scenic, is known for its beautiful rural settings. We therefore explore to what 

extent urban, suburban and rural areas affect scenic ratings.  

We build our first model to help us determine how scenic an area is. We explore 

to what extent geographical differences in scenicness can be explained by the 

following objective measurements: population density, number of residents, and 

urban, suburban or rural categories.  

As noted in the Methods section, spatial data may exhibit autocorrelation, where 

nearby observations may have similar values due to their proximity, and thereby 

violate the assumption made in linear regression that observations are independent. 

To test whether autocorrelation exists, we first build a linear regression model. A 

Moran’s I test on the residuals of the linear regression model confirms that the 

model reveals significant spatial autocorrelation in the residuals of the linear 

regression models (Moran’s I = 0.127, N = 15,188, p < 0.001). We therefore build a 

Conditional Auto Regressive (CAR) model (as described in the Methods section) 

that takes spatial autocorrelation into account (Bivand et al., 2013; Harris et al., 

2005). 

We find that low population density is associated with areas of high scenicness 

(β = -0.285, N = 15,188, p < 0.001) and that the lower the number of residents in an 

LSOA, the greater the scenicness (β = -0.0001, N = 15,188, p < 0.001). We also 

find that urban and suburban areas are associated with less scenicness (Urban β = 

-0.260, N = 15,188, p < 0.001; Suburban β = -0.083, N = 15,188, p < 0.001).  
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Figure 3.2 The relationship between Flickr photographs and ratings of scenicness 
from Scenic-Or-Not in Great Britain.  
(a) We create a density plot of all Flickr photographs uploaded in 2013 geotagged as being 
taken in Great Britain. Inspection of the map indicates that most images are taken in areas 
of high population density such as London and Manchester. (b) The Scenic-Or-Not dataset 
comprises 217,000 images, sourced from Geograph, covering nearly 95% of the 1 km grid 
squares of Great Britain. We calculate the average scenic rating of all Scenic-or-Not 
photographs at the level of English Lower Layer Super Output Area (LSOA) and depict 
these ratings using quantile breaks. Examination of the two maps indicates that while the 
major cities have a higher density of photos, they are also rated as the least scenic. On the 
other hand, Scotland is rated as highly scenic while the density of photos remains low. This 
suggests that population density needs to be taken into account in the analysis. (c) An 
individual photographer may take several photographs of an area. While this may reveal 
individual preferences, we are primarily interested in the collective perception of scenicness. 
We therefore calculate the mean number of Flickr photographers for each LSOA and depict 
these ratings using quantile breaks. Visual inspection of these maps reveals that measures 
of the number of Flickr photographers per LSOA correspond well with scenic ratings from 
Scenic-Or-Not. 
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We now explore to what extent crowdsourced data from Flickr and 

OpenStreetMap can add additional explanatory power to our base model. First, we 

investigate whether the quantity of geotagged images uploaded to Flickr may be 

used as a proxy for visual preference of an area. As we are interested in the 

perception of outdoor environments rather than indoor environments, we also use 

crowdsourced data from OpenStreetMap to determine where buildings are located, 

and use this data to exclude Flickr images that have been taken inside buildings. 

We note factors that may affect the quantity of Flickr images besides the 

scenicness of an area, and take a number of steps to correct for these issues in our 

analysis. First of all, we account for the fact that one photographer may take several 

photographs of an area. While this may reveal individual preference for an area, this 

may not reveal collective preference for an area. We therefore consider only the 

quantity of Flickr photographers for each LSOA, as we are primarily interested in the 

collective perception of scenicness.  

Next, we consider the various reasons for people taking outdoor photographs. 

For example, people typically upload photographs to Flickr when they want to share 

a memory of an event or an activity (Purves et al., 2011) such as a birthday party, or 

they might share many pictures of themselves (commonly known as “selfies”). 

People might also add valuable information related to a photograph if they are 

motivated to share the image with the wider public (Nov et al., 2008). We therefore 

attempt to mitigate these potential biases in the uploaded Flickr photographs, as 

well as identify a stronger signal of scenic images by the following approaches: (1) 

we attempt to identify travel photographers and (2) we attempt to identify scenic 

images. 

We hypothesise that Flickr photographs taken by photographers that travel are 

more likely to reveal scenic preferences. We therefore count the number of LSOAs 

in which each Flickr photographer has taken photos. We find the average number of 

LSOAs in which someone has taken a photograph is eight. We therefore deem a 

Flickr photographer a “travel photographer” if they have taken photographs in more 

than eight LSOAs.  

We also attempt to identify which images are scenic, using textual data people 

have added to describe the image, as explained in more detail in the Methods 

section. We classify an image as scenic if there is a mention of “scenic” or a similar 

word to “scenic” in this textual metadata. We then count the number of images 

classified as scenic for each LSOA. We also include the count of images classified 

as scenic divided by all the images uploaded per LSOA, which gives us the 

proportion of images classified as scenic uploaded per LSOA. 
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Finally, we correct for a variety of characteristics that may affect the quantity of 

images uploaded in each LSOA: land area, quantity of points of interest and 

quantity of natural features. As LSOAs vary dramatically in size – between 1 

hectare to 67,280 hectares in our analysis – and people may take more pictures in 

larger LSOAs, we consider to what extent land area affects the number of Flickr 

photographs taken. Certain points of interest (POIs), particularly tourist attractions, 

such as the London Eye, Big Ben and Edinburgh Castle attract large numbers of 

images (Antoniou, Morley & Haklay, 2010). This could distort the signal of whether 

or not the photographer considers the location scenic. We therefore consider how 

the quantity of POIs in each LSOA influence the number of Flickr photographs 

taken. OpenStreetMap also has data on how many natural POIs exist in each 

LSOA. As natural POIs may be associated with scenicness, we also consider how 

many Flickr images are taken considering how many natural POIs occur in each 

LSOA. 

We can now test whether models that include crowdsourced variables perform 

better than a base model that only includes the objective measurements (population 

density, number of residents, and urban, suburban or rural categories). Table 3.2 

lists all the crowdsourced variables that we test. 

Using a statistical learning approach (as specified in the Methods section), we 

identify two candidate models that include crowdsourced data: (1) A simple Flickr 

model that, in addition to the base model, includes the number of Flickr 

photographers in each LSOA divided by the number of POIs in that LSOA (variable: 

photographers.POI); and (2) an extended Flickr model that, in addition to the simple 

Flickr model, includes the number of images classified as scenic per LSOA 

(variable: photos.scenic.similiar). 

As in our previous analysis, we build these two candidate Flickr models as 

Conditional Auto Regressive (CAR) models. In the simple Flickr model, we find that 

a greater number of Flickr photographers, adjusted by POI, is significantly 

associated with higher ratings of scenicness (β = 0.095, N = 15,188, p < 0.001). In 

the extended Flickr model, we also find that a greater number of Flickr 

photographers, adjusted by POI, is significantly associated with higher ratings of 

scenicness (β = 0.092, N = 15,188, p < 0.001). We also find that the number of 

images with the word “scenic” or a word similar to “scenic” is significantly associated 

with higher ratings of scenicness (β = 0.001, N = 15,188, p < 0.001).  

Finally, in order to determine whether models including crowdsourced variables 

can perform better than the models that only include objective measurements, we 

rank all three models – the base model, the simple Flickr model and the extended 
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Flickr model – in terms of their Akaike Information Criterion (AIC) value. This 

provides a measure of the relative model fit given a set of data. In order to compare 

the fit of the models to each other, AIC values are transformed to Akaike weights 

(AICw) following the method proposed by Wagenmakers and Farrell (2004). These 

weights can be interpreted as the probability of each model, given the data, as 

described in the Methods section. This model comparison indicates that models 

including crowdsourced geographic data from Flickr and OpenStreetMap provide 

more accurate estimates of the scenicness of an area than models that only include 

objective measurements such as population density and whether an area is urban, 

suburban or rural (Tab. 3.3).  

 
Table 3.3. The performance of different models for estimating scenic ratings. 
Regression coefficients for CAR models estimating scenic ratings based on the validation 
data set. These results provide evidence that models including crowdsourced data have 
greater power to estimate scenic areas. 
 

 Base model 
 

Simple Flickr 
model 

Extended Flickr 

model 

Log of Population Density -0.285 *** -0.274 *** -0.270 *** 
All residents 0.000 *** 0.000 *** 0.000 *** 
Suburban -0.083 *** -0.087 *** -0.088 *** 
Urban -0.260 *** -0.26 *** -0.263 *** 
photographers.POI  0.095 *** 0.092 *** 
photos.scenic.similiar   0.001 *** 

No of observations 15188 15188 15188 
AIC 43045 42850 42830 

AICd 215 20 0 
AICw < 0.001 < 0.001 > 0.999 

 

 

Using the most probable model, the extended Flickr model, we further investigate 

how the ranked estimates of scenic areas compare to the ranked actual measures 

of scenic areas in different settings (Fig. 3.3). We find that our model is most 

successful at estimating scenic areas in rural settings (Urban: τ = 0.216, N = 1,060, 

p < 0.001; Suburban: τ = 0.225, N = 2,567, p < 0.001; Rural: τ = 0.363, N = 2,449, p 

< 0.001, Kendall’s rank correlation).  
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Figure 3.3. Ranked estimated scenic ratings versus ranked actual scenic ratings 
broken down by urban, suburban and rural areas.  
Estimated scenic ratings are generated on a test dataset using the best Flickr model. 
Estimated and actual ratings are ranked and rescaled such that the lowest rank (most scenic 
area) is given the value 0, and the highest rank (least scenic area) is given the value 1. 
Rescaled ranks are then plotted using a 2D kernel density estimation.  

3.4 Discussion 

We investigate whether the vast quantity of data uploaded to the Internet could 

help us identify which areas of Great Britain people consider to be scenic. We 

analyse data from geotagged images uploaded to Flickr, combined with 

crowdsourced geographic data from OpenStreetMap, in order to see if such data 

can provide improvements of scenic estimations. We validate our findings using the 

website Scenic-Or-Not, which crowdsources ratings of scenicness in Great Britain.  

Our findings suggest that crowdsourced data from sources such as Flickr and 

OpenStreetMap has the potential to reveal information about how people actually 

interact with their environment. Specifically, we find that models using 

crowdsourced data can generate more accurate estimates of scenicness than 

models comprising only basic census measurements such as population density or 

whether an area is urban or rural. Our results provide evidence that, indeed, 

measures of images uploaded to Flickr can provide information that can inform 

estimates of how scenic an area is. 

However, while the improvement is significant, the effect size is not large. As our 

sample analysis of 10,000 Flickr images indicated that around 23% of our images 

we deemed to be outdoor images might in fact be indoor images, these might be 

adding uncertainty to our results.  

Using a statistical learning approach, we identify the following crowdsourced 

variables as those that most improve estimates of scenicness: (1) the quantity of 

unique Flickr photographers, taking into account the number of POIs (as obtained 

through OpenStreetMap data) in each LSOA and (2) the number of images with the 

word “scenic” or a word similar to “scenic” per LSOA. We found no evidence in 

support of our hypothesis that travel photographers would give us a useful metric. 
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Visual analysis of the photographs uploaded by the most prolific Flickr travel 

photographers reveals that many of them use Flickr for curated content such as bus 

and train spotting (an observation also reported by Gliozzo et al., 2016). If the 

primary motivation of many of the photographers on Flickr is to only post content on 

a particular subject, then this would distort the estimate that Flickr data may provide 

on the scenicness of an area. We aim to mitigate this effect by only including 

images that we identify as being related to scenicness through our analysis of 

textual data associated with each image. While this approach improves our results, 

the overall impact from this approach still is not strong enough to dramatically 

improve our scenicness estimates.  

Finally, we consider why models drawing on data from Flickr and 

OpenStreetMap produce more accurate estimates of scenicness in rural 

neighbourhoods than in urban and suburban areas. This may be due to the plurality 

of reasons for which people upload photographs in urban and suburban 

neighbourhoods: for instance, creating a memory of an event such as a birthday 

party or a sporting event. Urban and suburban LSOAs are also likely to have a 

greater number of unidentified indoor images in our analysis. While our analysis 

only uses images indicated by OpenStreetMap data to have been taken outside 

buildings, a neural network trained to extract information from images of outdoor 

and indoor environments, Places CNN (Zhou et al., 2014), produces different 

classifications for some of these images. Specifically, when analysing a sample of 

10,000 images classified as outdoor using OpenStreetMap data, we find that Places 

CNN classifies 35% of these images taken in urban areas and 24% of these images 

taken in suburban areas as indoor images. In rural areas, only 14% of the images 

classified as outdoor images using OpenStreetMap data are classified as indoor 

images with Places CNN. We suggest that higher building density in urban and 

suburban areas may mean that higher location accuracy is required to avoid 

misclassification between indoor and outdoor locations, such that a greater 

proportion of misclassifications is to be expected. This problem is likely to be 

exacerbated due to reduced accuracy of GPS location technology in built-up areas. 

OpenStreetMap data can also suffer from lack of positional accuracy and lack of 

completeness (Haklay, 2010; Zielstra et al., 2013). Urban and suburban areas may 

be more likely to have buildings that have yet to be added to the OpenStreetMap 

buildings data. Our OpenStreetMap data on POIs may also contain a great deal of 

uncertainty, particularly in urban and suburban areas where there are likely to be a 

greater number of POIs and thus a higher chance of inaccuracies.  
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Furthermore, we note that Scenic-Or-Not ratings are provided on a 1 km grid 

square basis. At the same time, urban and suburban LSOAs are likely to be smaller 

than rural LSOAs: rural LSOAs range from 2 to 67,280 hectares; suburban LSOAs 

range from 4 to 5,362 hectares; and urban LSOAs range from 1 to 4,804 hectares. 

Information on the scenicness of urban and suburban areas may therefore be lower 

in quality, due to a lower number of scenicness ratings per LSOA. Further research 

will need to be conducted in order to mitigate these factors. 

Nonetheless, analysis of crowdsourced data does seem to provide valuable 

information on how people perceive their everyday environments. Our results 

suggest that by exploiting data gathered from our everyday interactions with the 

Internet, scientists and policymakers alike may be able to develop a better 

understanding of people’s subjective experience of the environment in which they 

live. 
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Chapter 4 
Predicting scenic ratings using deep learning 

4.1 Introduction 

In Chapter 3, we explored whether the vast quantity of data uploaded to the 

Internet – in this case, geotagged images uploaded to Flickr combined with 

crowdsourced geographic data from OpenStreetMap – can be used to estimate the 

scenicness of places for which we do not have crowdsourced scenic ratings. We 

find that models including crowdsourced data from Flickr and OpenStreetMap can 

generate more accurate estimates of scenicness than models that consider only 

basic census measurements such as population density or whether an area is 

urban or rural, however the improvement is modest. 

Recent advances in computer vision methods, particularly convolutional neural 

networks (CNNs), provide us with a new method to extract visual information about 

our environment at a large scale (De Nadai et al., 2016; Dubey et al., 2016). We 

draw on this ongoing and rapid improvement in computer vision techniques, 

particularly in convolutional neural networks, to evaluate to what degree of accuracy 

we can create a CNN to predict the beauty of scenes for which we do not have 

survey or crowdsourced scenicness data. 

In this chapter, we first use images from Scenic-Or-Not (introduced in Chapter 3) 

to train a CNN, and we evaluate its accuracy for predicting scenicness. The Scenic-

Or-Not images were originally sourced from Geograph, an online crowdsourcing 

project created to collect and reference geographically representative images of 

each square kilometre of the British Isles. In order to ensure our CNN is versatile, 

we then evaluate how well it performs on a completely different source of images, 

Google Street View, which contains pictures of the environment around the globe. 

This test indicates how accurate our CNN might be when used to predict the 

scenicness of images in a country that does not have data equivalent to the 

Geograph dataset in the UK. Our ultimate aim is to develop the means to generate 

large-scale data on the scenicness of the environment, in order to enable future 

research that aims to explore the connection between scenic beauty and various 

important measures beyond just wellbeing, such as the performance of the local 

economy, tourism performance, and perhaps levels of residential physical activity. 

Part of the research reported in this chapter was published in Seresinhe, Preis & 

Moat (2017). 
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4.2 Building a deep learning model to predict scenicness 

In our first attempt to build a model to predict the scenicness of images, we use 

data from Scenic-Or-Not (as detailed in Chapter 3) to determine how accurately our 

model is able to predict scenicness. We first build an elastic net model to establish a 

baseline prediction accuracy. We specifically choose to use an elastic net model as 

these have been shown to perform well even in situations where there are highly 

correlated predictors (Zou & Hastie, 2005). We then assess how much we can 

improve this accuracy with a deep learning model, specially a convolutional neural 

network. The introduction of convolutional neural networks has lead to dramatic 

improvements in computer vision tasks, including visual recognition (Donahue et al., 

2014; Sharif Razavian et al., 2014), understanding image aesthetics (Tan et al., 

2017; Lu et al., 2015), and extracting perceptions of urban neighbourhoods (De 

Nadai et al., 2016; Dubey et al., 2016). Thus, our hypothesis is that our deep 

learning model will lead to a far greater prediction accuracy than our elastic net 

model. 

4.2.1 Data and methods 

Scenic-Or-Not data 

The Scenic-Or-Not web game presents users with random geotagged 

photographs of Great Britain, which visitors can rate on an integer scale 1 – 10, 

where 10 indicates “very scenic” and 1 indicates “not scenic”. Each image, sourced 

from Geograph, represents a 1 km grid square of Great Britain. See section 3.2 for 

a full description of the data. For our final analysis, we use 206,171 images in total 

and hold out 20% of this dataset to test our prediction accuracy. 

Extracting scene attributes and place categories from Scenic-Or-Not images 

For each Scenic-Or-Not image, we use the Places205 AlexNet CNN (Zhou et al., 

2014), which has been trained on data from the Scene UNderstanding (SUN) 

attribute database (Patterson et al., 2014) to extract the probabilities of 102 scene 

attributes such as “trees” and “flowers”. The SUN attribute database contains 102 

discriminative outdoor scene attributes, spanning from materials to activities (e.g. 

“wire”, “vegetation”, “shopping”). We extract probabilities for scene attributes from 

the FC7 layer (the penultimate fully-connected layer) of the AlexNet CNN. Table 4.1 

lists all the scene attributes used in our analysis. 
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Table 4.1. 102 Scene UNderstanding (SUN) Scene Attributes. 
We use the Places205 AlexNet CNN (Zhou et al., 2014) trained on data from the 
Scene UNderstanding (SUN) attribute database (Patterson et al., 2014) to extract the 
probabilities of the 102 listed scene attributes. 

 

sailing/boating spectating tiles glossy 
driving farming concrete matte 
biking constructing metal sterile 
transporting shopping paper moist 
sunbathing medical wood dry 
touring working vinyl dirty 
hiking using tools plastic rusty 
climbing digging cloth warm 
camping business sand cold 
reading praying rocky natural 
studying fencing dirt soil man-made 
Rtraining railing marble open area 
research wire glass semi-enclosed area 
diving railroad waves enclosed area 
swimming trees ocean far-away horizon 
bathing grass running water nohorizon 
eating vegetation still water rugged 
cleaning shrubbery ice vertical components 
socializing foliage snow horizontal components 
congregating leaves clouds symmetrical 
waiting flowers smoke cluttered 
competing asphalt fire scary 
sports pavement natural light soothing 
exercise shingles sunny stressful 
playing carpet electric lighting  
gaming brick aged  

 

We use the more recent Places365 CNN (Zhou et al., 2016), trained on the 

Places2 dataset, a repository of 8 million scene photographs, to extract the 

probabilities of 365 place category classifications such as “mountain”, “lake natural”, 

“residential neighbourhood” and “train station platform”. We specifically use the 

Places365 CNN trained using the 152-layer Residual Network (ResNet152) 

architecture (He et al., 2016), as this resulted in the best classification accuracy. 

Table 4.2 lists all the place categories used in our analysis. 
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Table 4.2. 365 Place Categories. 
We use the more recent Places365 CNN (Zhou et al., 2016) trained on the Places2 dataset 
(a repository of 8 million scene photographs) to extract the probabilities of the 365 listed 
place category classifications such as “mountain”, “lake natural”, “residential neighbourhood” 
and “train station platform”. In our elastic net model, we consider only features that have 
been labelled as outdoor place categories. 
 
Outdoor 

airfield carrousel forest path lake natural picnic area stage 

alley castle forest road landfill pier street 

amphitheater cemetery formal 
garden 

landing deck playground swamp 

amusement 
park 

chalet fountain lawn plaza swimming pool 

apartment 
building 

church garage library pond synagogue 

aqueduct cliff gas station lighthouse porch temple asia 

arch coast gazebo 
exterior 

loading dock promenade topiary garden 

army base construction 
site 

general 
store 

lock chamber racecourse tower 

athletic field corn field glacier mansion raceway tree farm 

badlands corral golf course manufactured 
home 

raft tree house 

balcony 
exterior 

cottage greenhouse market railroad track trench 

balcony 
interior 

courthouse grotto marsh rainforest tundra 

bamboo forest courtyard hangar mausoleum residential 
neighborhood 

underwater ocean 
deep 

barn creek harbor medina restaurant patio valley 

barndoor crevasse hayfield moat water rice paddy vegetable garden 

baseball field crosswalk heliport mosque river viaduct 

bazaar dam highway motel rock arch village 

beach desert sand hospital mountain roof garden vineyard 

beach house desert 
vegetation 

hot spring mountain path rope bridge volcano 

beer garden desert road hotel mountain 
snowy 

ruin volleyball court 

boardwalk diner house museum runway water park 

boat deck doorway hunting 
lodge 

oast house sandbox water tower 

boathouse downtown ice floe ocean schoolhouse waterfall 

botanical 
garden 

driveway ice shelf office building shed watering hole 

bridge embassy ice skating. 
rink 

oilrig shopfront wave 

building 
facade 

excavation iceberg orchard ski resort wheat field 

bullring farm igloo pagoda ski slope wind farm 

bus station field 
cultivated 

industrial 
area 

palace sky windmill 

butte field wild inn park skyscraper yard 

cabin field road islet parking garage slum zen garden 

campsite fire escape japanese 
garden 

parking lot snowfield  

campus fire station junkyard pasture soccer field  
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canal natural fishpond kasbah patio stadium baseball  

canal urban football field kennel pavilion stadium football  

canyon forest 
broadleaf 

lagoon phone booth stadium soccer  

Indoor 
airplane cabin basement closet galley martial arts gym server room 

airport 
terminal 

basketball 
court 

clothing 
store 

garage mezzanine shoe shop 

alcove bathroom cockpit general store movie theater shopping mall 

amusement 
arcade 

bazaar coffee shop gift shop museum shower 

aquarium beauty salon computer 
room 

greenhouse music studio stable 

arcade bedchamber conference 
center 

gymnasium natural history 
museum 

stage 

archaelogical 
excavation 

bedroom conference 
room 

hangar nursery staircase 

archive beer hall corridor hardware store nursing home storage room 

arena hockey berth delicatessen home office office subway station 
platform 

arena 
performance 

biology 
laboratory 

department 
store 

home theater office cubicles supermarket 

arena rodeo bookstore dining hall hospital room operating room sushi bar 

art gallery booth dining room hotel room orchestra pit swimming hole 

art school bow window discotheque ice 
cream.parlor 

pantry swimming pool 

art studio bowling alley dorm room ice skating.rink parking garage television room 

artists loft boxing ring dressing 
room 

jacuzzi pet shop television studio 

assembly line burial 
chamber 

drugstore jail cell pharmacy throne room 

atrium public bus interior elevator 
door 

jewelry shop physics 
laboratory 

ticket booth 

attic butchers 
shop 

elevator 
lobby 

kindergarden 
classroom 

pizzeria toyshop 

auditorium cafeteria elevator 
shaft 

kitchen playroom train interior 

auto factory candy store engine room laundromat pub train station 
platform 

auto 
showroom 

car interior entrance hall lecture room reception utility room 

bakery shop catacomb escalator legislative 
chamber 

recreation room veterinarians 
office 

ball pit chemistry 
lab 

fabric store library repair shop waiting room 

ballroom childs room fastfood 
restaurant 

living room restaurant wet bar 

bank vault church flea market lobby restaurant 
kitchen 

youth hostel 

banquet hall classroom florist shop locker room sauna  

bar clean room food court market science museum  

 

Extracting basic characteristics from Scenic-Or-Not images 

We also explore the basic characteristics of photographs in our scenic ratings 

dataset, including their colour composition, saturation, brightness and colour 

variation. We examine each image from Scenic-Or-Not on a per-pixel level, with 
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each pixel allocated to one of eleven colours that constitute the principal colours in 

the English vocabulary (black, blue, brown, grey, green, orange, pink, purple, red, 

white, yellow). As colour naming varies from one individual to another (Ratliff, 

1976), we draw on crowdsourced data generated through an online survey of 1.5 

million participants (Munroe, 2010) to determine to which colour a pixel should be 

allocated. In this survey, participants were shown an area filled with a random fully-

saturated colour on both black and white backgrounds, and asked to name the 

colour. These responses were then used to create a list of the dominant colour 

names corresponding to fully saturated RGB (Red, Green, Blue) values. We use 

this data in order to determine where colour boundaries should be drawn: for 

example, where “brown” ends and “green” begins. The RGB colours are converted 

to the HSV (Hue, Saturation, Value) colour space and each pixel is matched to the 

closest corresponding colour, based on its hue parameter. The nature of the 

relationship between HSV and RGB space is such that all possible hues are 

covered by all fully saturated RGB colours. As black, grey and white do not have a 

defined hue, these colour boundaries were determined based on a combination of 

the levels of “Saturation” and “Value” (Fig. 4.1). 

We measure the saturation of each image by calculating the mean “Saturation” 

of each pixel in the HSV colour space. We measure the brightness of each image 

by calculating the mean “Value” of each pixel in the HSV colour space. We measure 

the colour variation of each image by using k-means clustering to reduce the colour 

palette of each image to an eight-colour palette. We then compute the mean R, G 

and B values of the colour palette, and then derive a measure of how much colour 

variation is in the image by taking the square root of the sum of squares of each 

palette colour’s R, G and B difference from the mean. 
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Figure 4.1. Allocating black, grey and white based on value and saturation.  
Here, the hue has been set to one colour (green) in order to illustrate where the boundaries 
of black, grey and white are set. At the borders, the colour may appear to be more or less 
grey, as well as more or less black, depending on the hue, so the boundaries are chosen as 
a best-fit compromise over the entire range of hue values.  

 
Elastic net model 

Elastic net models are a compromise between ridge regression and LASSO 

(Least Absolute Shrinkage and Selection Operator), both of which are adaptations 

of the linear regression model, with a penalty parameter in order to avoid overfitting. 

In order to exploit the information contained in all the photographs in our dataset, 

we build an elastic net model that considers the following features extracted from 

the images: basic characteristics such as colour composition, 102 SUN scene 

attributes, and those Places365 place categories that are labelled as outdoor, of 

which there are 205. (Note that these 205 outdoor categories from the Places365 

CNN differ from the 205 outdoor and indoor categories from the Places205 CNN). In 

our Elastic Net Model, we use cross validation to learn the alpha parameter of the 

elastic net (the mix between ridge and lasso) as well as the lambda parameter (the 

penalty).  

 

Convolutional neural networks (CNNs) and transfer learning 

While we anticipate that a CNN model has the potential to perform much better 

for this task than an elastic net model, creating a CNN that can perform adequately 

for any computer vision task, such as object detection, typically requires a training 

dataset comprising millions of images. For example, the CNN that won the 2012 
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ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) was trained on 

roughly 1.2 million images and achieves an error rate of only 17.0% when predicting 

the top five labels for an image (Krizhevsky, Sutskever & Hinton, 2012). As we have 

limited training data, we use a transfer learning approach (Pan & Yang, 2010) to 

leverage the knowledge of the pre-trained Places365 CNN (introduced above), as 

this CNN already performs well for place recognition. Figure 4.2 illustrates the 

method used for this approach. We fine-tune all the layers of the CNN, already 

trained on the Places365 database, to predict the scenicness of images. We 

examine the performance of all four different architectures that have been used to 

train the Places365 CNN: AlexNet (Krizhevsky, Sutskever & Hinton, 2012), Visual 

Geometry Group (VGG16) (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et 

al., 2015) and ResNet152 (He et al., 2016). For all our experiments, we use the 

deep learning framework Caffe (Szegedy et al., 2015). For AlexNet, Visual 

Geometry Group (VGG16) and GoogLeNet, training is performed by stochastic 

gradient descent (SGD) with mini-batch size 50, a learning rate 0.0001 and 

momentum 0.9, for 10,000 iterations. For ResNet152, training is performed using a 

mini-batch size of 10 (due to GPU memory constraints) for 50,000 iterations, to 

ensure all four networks were exposed to the same amount of images. 

 
Figure 4.2. Using transfer learning to predict scenicness.  
Here, we provide an abstract illustration of the CNN architecture and our approach. As we 
have limited training data, we use a transfer learning approach (Pan & Yang, 2010) to 
leverage the knowledge of the Places365 CNN. We modify the final layer of our 
convolutional neural network to predict scenic scores rather than the probabilities of place 
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categories. Image © Copyright Philip Halling. Copyright of the image is retained by the 
photographer. Images are licensed for reuse under the Creative Commons Attribution-Share 
Alike 2.0 Generic License. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-sa/2.0/. Figure adapted from Mathworks 
Convolutional Neural Networks webpage figure at 
https://uk.mathworks.com/discovery/convolutional-neural-network.html. 

4.2.2 Results 

Table 4.3 compares the results for both the elastic net and all the fine-tuned CNN 

models. Our performance measure is the Kendall’s Rank correlation between the 

predicted scenic scores and the actual scenic scores. With our elastic net model, 

we achieve a performance score of 0.544 for all images and 0.445 for urban built-up 

images. The Scenic-Or-Not CNN trained using the VGG16 convolutional neural 

network architecture delivers the best performance for all images, achieving a 

performance score of 0.658 for all images and 0.590 for urban built-up images, 

measured using Kendall’s rank correlation. The performance of the slightly deeper 

GoogLeNet and the much deeper ResNet152 models are similar. Further 

experiments could be carried out in the future to determine if the deeper networks 

can be made to perform better, perhaps by varying training parameters (for 

example, by choosing different learning rates or different optimisation techniques). 

However it might be the case that for this task, the deeper networks may be more 

prone to overfitting, and thus may not generalise well (Kabkab, Hand & Chellappa, 

2016). Further experiments would be required to conclusively state which network 

might be best suited for prediction of scene aesthetics. 

 
Table 4.3. Scenic-Or-Not CNN Prediction Results.  
We check to what degree we can predict the beauty of scenes for new places for which we 
do not have survey or crowdsourced scenicness data. Our first model is an elastic net model 
to predict the scenicness of images. Our second model is a convolutional neural network 
fine-tuned on the Places365 CNN to predict the scenicness of images. We check the 
performance on four different convolutional neural network architectures that have been 
used to train the Places365CNN: AlexNet, Visual Geometry Group (VGG16), GoogleNet and 
ResNet152. We hold out a 20% test set to check our prediction accuracy. We calculate a 
performance measure using the Kendall Rank correlation between the predicted scenic 
scores and the actual scenic scores. All four Scenic CNNs outperform the elastic net model 
in both of our datasets, with all Scenic-Or-Not images, and also with only Urban Built-up 
Scenic-Or-Not images. The Scenic CNN trained using the VGG16 convolutional neural 
network architecture delivers the best performance overall.  
 
 Elastic net  Scenic CNN 

   AlexNet VGG16 GoogleNet ResNet152 

All 0.544 0.627 0.658 0.653 0.654 

Urban Built-up 0.445 0.553 0.590 0.590 0.567 
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4.3 Predicting scenicness at a higher resolution 

Our Scenic-Or-Not database contains only one image per 1 km2 grid square, and 

only in Great Britain. Generating scenic ratings at a higher resolution might help us 

in studies where we want to understand the connection between scenicness and 

wellbeing in areas where scenicness varies considerably, such as high-density 

urban areas, or if we want to track how scenicness might change over time. We 

check how well our Scenic-Or-Not CNN performs in London – an area for which we 

do not have data at a high resolution from Scenic-Or-Not – by predicting scenic 

ratings of images from two sources: Geograph and Google Street View. We also 

retrain our Scenic-Or-Not CNN on Google Street View images to see if we can 

improve performance on this new set of images. 

4.3.1 Data and methods 

Geograph images at high resolution for London 

Geograph (http://www.geograph.org.uk) is an online documentation project 

encouraging users to submit geographically representative photographs of Great 

Britain. The Scenic-Or-Not images were originally sourced from Geograph. To see 

how well our Scenic-Or-Not CNN picks up scenic areas around London, we use all 

images uploaded to Geograph that we can locate in London and that we have 

identified as having been taken outdoors; this results in 243,339 images. 

We use the Places CNN (Zhou et al., 2014) to determine whether any of the 

images in our above dataset have been taken indoors, and exclude these images. 

The labels of the top five predicted place categories can be used to classify images 

as depicting indoor or outdoor locations with more than 95% accuracy (Zhou et al., 

2014). 

 

Google Street View images  

Google Street View is a Google Maps feature that displays panoramas of 

stitched photographs of streets. Most photographs are taken by Street View cars, 

but hard-to-access locations are sometimes photographed using other equipment 

such as the Street View Trekker, a wearable backpack outfitted with a camera 

system. We create two separate databases of Google Street View images: (1) a 

small database to test our prediction accuracy, as the Google Street View images 

are remarkably different from our Scenic-or-Not images, and (2) a much larger 

database to see how well we can predict scenic areas around London and to see if 

we can determine changes in scenicness over time. 



 58 

Google Street View images to test prediction accuracy 

In order to test how well our Scenic-Or-Not CNN performs on Google Street View 

images, we need to gather ground truth data on the scenic ratings of this new image 

dataset. We use the Google Street View API to randomly sample four images per 

Inner London Lower Layer Super Output Areas (LSOAs). LSOAs are defined by the 

Office for National Statistics for statistical analyses. LSOAs are geographic areas 

ranging from 0.018 to 684 square km, containing between 983 and 8,300 residents 

(1,500 on average). We choose LSOAs from the following local authority districts of 

Inner London: Camden, Greenwich, Hackney, Hammersmith and Fulham, Islington, 

Royal Borough of Kensington and Chelsea, Lambeth, Lewisham, Southwark, Tower 

Hamlets, Wandsworth, Westminster, and City of London. We use systematic 

unaligned sampling to generate the coordinates of the images, whereby the sample 

space (i.e. the entire LSOA) is split into four equal-sized sub-areas, and a random 

[x, y] coordinate is generated for each sub-area. 

Following a similar procedure to Scenic-Or-Not, we present our images in a web 

interface to be rated on a scale of 1-10. Figure 4.3 shows the interface for Scenic 

London. The respondents to our exercise were mainly sourced from a massive 

open online course (MOOC) running on the online learning platform FutureLearn. In 

this exercise, participants were asked to rate at least 20 images. We gathered 

34,955 ratings for 6,948 images from 15 June 2017 to 12 September 2017. We 

again hold out 20% of our data to test prediction accuracy. 



 59 

Figure 4.3. The Scenic London visiting screen.  
Screenshot of interface to gather votes for Google Street View images of inner London. 
Image @ 2017 Google. 

 

Google Street View images at high resolution for London 

We use the Python module Streetview (Letchford, 2016) to locate images on a 

100-square-meter-resolution grid across all of London: one image per grid square 

taken in 2008-2009 and another taken in 2014-2015. Each point on the grid is 

allocated a unique “location ID”. For each location ID, we search for pairs of images 

that are maximum 5 meters apart. If there is no match across time periods, or no 

picture available for a location ID, we do not consider any pictures for that location. 

This results in 506,854 pairs of images, where 41,961 pairs are in the exact same 

location. 

4.3.2 Results 

Geograph images 

We first see how well our Scenic-Or-Not CNN picks up scenic areas around 

London using images sourced from Geograph. As the Scenic-Or-Not images are 

originally sourced from Geograph, we anticipate good performance from our CNN 

for the full Geograph dataset. Figure 4.4a demonstrates that parks known for their 

scenery, such as Hampstead Heath and Richmond Park, have large clusters of 

scenic imagery. We also see that areas around large bodies of water such as the 
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Thames also seem to contain the most scenic imagery. The most unscenic images 

seem to be located in the city centre. However, a close-up view reveals clusters of 

highly scenic imagery in attractive built-up areas, such as Trafalgar Square. An 

examination of the photos predicted to be scenic indicates that while our Scenic-Or-

Not CNN predicts high ratings for images containing primarily natural elements, 

images of man-made elements, particularly historical architecture around the city, 

including Big Ben and the Tower of London, are also predicted to be scenic (Fig. 

4.4b). While our Scenic-Or-Not CNN in general predicts low ratings for images 

containing primarily man-made features, images with a restricted view as well as 

those containing large areas of drab or unmaintained green space are also rated as 

unscenic (Fig. 4.4c). 
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Figure 4.4. Predictions of scenic ratings for London images with our  
Scenic-Or-Not CNN.  
With our Scenic-Or-Not CNN, we predict the scenicness of pictures of London uploaded to 
Geograph (http://www.geograph.org.uk), an online project that collects geographically 
representative photographs of Great Britain and Ireland. Note that only those categories and 
features given a probability of 0.001 or higher have been included in the figure. (a) 
Examining the estimates of how scenic images around London are, we immediately notice 
that parks known for their attractive scenery such as Hampstead Heath and Richmond Park 
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have large clusters of images rated as scenic. The city centre appears to be largely 
unscenic, although a close-up view reveals clusters of scenic images in built-up areas. (b) A 
sample of the top 5% of the photos predicted to be scenic indicates that our Scenic CNN 
mostly predicts high ratings for images containing primarily natural elements. However, we 
also see that images containing primarily man-made objects can also be estimated as 
scenic. (c) A sample of the bottom 5% of the photos predicted as scenic indicates that our 
CNN predicts low ratings for images containing primarily man-made features. Images with a 
restricted view can also be rated as unscenic. However, images containing large areas of 
green space also tend to be rated low if they are largely flat and uninteresting or 
unmaintained. Owing to the different shapes of the photographs, some images have been 
cropped to aid presentation in this figure. Photographers of scenic images: © Copyright 
Stephen McKay, © Copyright Christine Matthews, © Copyright Christine Matthews, © 
Copyright Roger Davies; Photographers of unscenic images: © Copyright Stephen Craven, 
© Copyright Robert Lamb, © Copyright John Salmon, © Copyright Marathon. Copyright of 
the images is retained by the photographers. Images are licensed for reuse under the 
Creative Commons Attribution-Share Alike 2.0 Generic License. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by-sa/2.0/. Map created using R package 
“ggmap” (Kahle & Wickham, 2013). Map data © 2017 Google. 
 
Google Street View images 

We now see how well our Scenic-Or-Not CNN picks up scenic areas around 

London from Google Street View images. Such a data source has the advantage of 

being comprehensive, with many more images available per unit area compared to 

Scenic-Or-Not, as well as historical images at each location. However, Google 

Street View images have some important fundamental differences from Scenic-Or-

Not / Geograph images: they typically have a wider angle of view, and can often 

contain image artefacts such as blurred areas. Therefore, using our current Scenic-

Or-Not CNN, we anticipate that we might not be able to predict scenicness for 

Google Street View images with as high an accuracy as for Geograph images. For 

this reason, we create a separate test set of Google Street View images to first test 

how accurately we can predict the scenicness of these images.  

We again hold out 20% of our Google Street View images to test prediction 

accuracy. Without further training of the Scenic-Or-Not CNN, we achieve a 

performance score of 0.286. This is much lower than for the original Scenic-Or-Not 

test set, for which the Scenic-Or-Not CNN achieved 0.658 for all images and 0.590 

for urban built-up images. We therefore leverage a similar transfer learning 

approach as before to further train the Scenic-Or-Not CNN on the training set of 

Google Street View images to see if we can improve performance. 

We further train the previous Scenic-Or-Not CNNs using all four different 

convolutional neural network architectures (AlexNet, VGG16, GoogLeNet, 

ResNet152). We follow the same method as before, but now train over fewer 

iterations, as we do not have as many images in our training set (5,500 Google 

Street View images compared to 160,000 Scenic-Or-Not images). We achieve the 

best performance with the Scenic-Or-Not CNN trained on GoogLeNet (from now on 
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referred to as Street-View-Scenic CNN) for 2000 iterations, which exhibited a 

performance score of 0.435. While the model has improved remarkably, from 0.286 

to 0.435 on Google Street View images, the performance score of the Street-View-

Scenic CNN is still much lower than what we were able to achieve with the Scenic-

Or-Not CNN on Scenic-Or-Not images. We reflect on the reasons why this might be 

the case in the discussion section. 

 
Figure 4.5. Predictions of scenic ratings of Google Street View images for 2015.  
With our Street-View-Scenic CNN, we predict the scenicness of pictures of London 
accessed from Google Street View. We are now able to estimate where scenic places are 
around London at a much higher density. As expected, images found on park paths, such as 
Richmond Park, are rated as highly scenic. We also see that many images on streets can 
also be rated as scenic. Overall, the majority of the streets in Central and East London are 
not as scenic as streets in North, South and West London. Map created using R package 
“ggmap” (Kahle & Wickham, 2013). Map data © 2018 Google. 
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We now investigate how our new Street-View-Scenic CNN performs on a more 

comprehensive set of Google Street View images of Greater London, using the 

506,854 matched pairs of images retrieved for 2008 and 2015. We find some similar 

patterns to our Geograph images. Figure 4.5 depicts ratings for the images 

retrieved for 2015, and demonstrates that images found on park paths are rated as 

highly scenic. As we now have far more images on streets, we also now see a 

plethora of images on streets rated as scenic; these images might represent streets 

abundant in greenery or beautiful architecture. We also see clearly that the majority 

of the areas in Central and East London are not as scenic as areas in North, South 

and West London. 

We also map out the changes in scenic ratings from 2008/2009 to 2014/2015. 

From visual inspection, it appears that areas in outer London have become more 

unscenic, while areas in central and east London have become more scenic. 

However, the data reveals that the changes in scenicness are relatively small, 

falling between -2.1 to +2.1. We therefore investigate what factors may be driving 

these changes in scenic ratings, to help understand whether these changes 

represent a signal of value, or merely artefacts in the Google Street View dataset. 

We select a number of images for which changes in estimated scenic rating 

between 2008/2009 and 2014/2015 were particularly high (defined as differences in 

scenicness in the third quartile and above). We find that the changes are sometimes 

driven by actual changes to the design of the street, such as an unsightly building 

being removed to create a park (Fig. 4.7a) as well as changes to the design of the 

architecture on the street (Fig. 4.7b,c,d). However, changes can also be temporary, 

such as a vehicle obstructing the view (Fig. 4.7e), construction (although 

construction can sometimes continue for years) (Fig. 4.7f), the season and weather 

(Fig. 4.7g); or the camera’s position itself could be slightly different, therefore 

including different elements of the building in the image (Fig. 4.7h). Some of these 

changes might be easy to exclude from the dataset, such as camera position and 

seasonality, as these can be identified via the metadata related to the image. 

However, changes such as a vehicle appearing in the image, or construction, would 

potentially require an additional image content analysis before being able to exclude 

them from the dataset. 
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Figure 4.6. Changes in scenic predictions from 2008/2009 to 2014/2015.  
With our Street-View-Scenic CNN, we predict the scenicness of pictures of London for 
2008/2009 and 2014/2015 and calculate the differences. Map created using R package 
“ggmap” (Kahle & Wickham, 2013). Map data © 2017 Google. It appears that areas in outer 
London have become more unscenic, while areas in central and east London have become 
more scenic.  
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Figure 4.7. Changes in scenic ratings for images in the same location (maximum 5m 
apart) from 2008/2009 to 2014/15.  
We find that the changes in scenic ratings are sometimes driven by actual changes to the 
design of the street, such as a new park or new design of a building (a-d). However, 
changes can also be temporary, such as a vehicle obstructing the view (e), construction (f), 
season and weather (g) or the camera’s position (h). Images have been retrieved via the 
Google Street View API. Images @ 2018 Google. 

4.4 Discussion 

Recent advances in computer vision, particularly the development of CNNs, are 

allowing us to extract insights from images at a far greater speed and accuracy than 

ever before. We explore to what level of accuracy we can create a CNN model to 

predict the beauty of scenes for which we either do not have crowdsourced scenic 

ratings, or for which we require scenic ratings at a higher resolution. We use a 

transfer learning approach and modify the existing Places365 CNN in order to 

create new CNNs to predict the scenicness of images. We achieve the best 

performance with our Scenic-Or-Not CNN trained using images from the Scenic-Or-

Not dataset, which are images originally sourced from Geograph, using the VGG16 

convolutional neural network architecture (performance scores are 0.658 for all 

images and 0.590 for our urban built-up images). 

We also explore how our Scenic-Or-Not CNN performs on images from another 

source, Google Street View, as this allows us to gather a far more comprehensive 

dataset of images for future research. Our original Scenic-Or-Not CNN does not 

perform as well on these images, achieving a performance score of only 0.286. 
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However, further training of this CNN using Google Street View images improves 

our performance score to 0.435 (using the GoogLeNet neural network architecture). 

We suggest possible reasons why the accuracy for Google Street View images 

might still be lower than the accuracy for Geograph images. Google Street View 

images are often of a lower quality than Geograph images, because Google Street 

View images are often composites that contain image artefacts such as blurred 

areas. Furthermore, the CNN's knowledge is based on training using several million 

images that have primarily been sourced via search engines (Google Images, Bing 

Images, and Flickr) rather than composite images from Google Street View. Thus, 

the CNN's training is largely based on images that might be not have been shot in 

the wide angle of view common to Google Street View images.  

We present our predictions for images in London from both our scenic CNNs (our 

Scenic-Or-Not CNN and our Street-View-Scenic CNN), and find that they are 

broadly in line with intuition. Our Scenic-Or-Not CNN predicts high ratings for 

images containing primarily natural elements, such as those located in London 

parks known for their attractive scenery, such as Hampstead and Richmond Park, 

and also predicts high scenic ratings for beautiful buildings, such as the iconic Big 

Ben and the Tower of London. The Street-View-Scenic CNN also picks up on paths 

in parks as being Scenic. Interestingly, this CNN seems to find areas in north, south 

and west London more beautiful compared to central and east London. 

We also explore to what degree we can track changes in scenicness over time. 

Initial inspection of the data suggests that outer areas of London may have become 

less scenic while areas in central and east London have become more scenic, but 

the changes in scenicness are small. Further analysis would be required to 

ascertain to what extent the measured changes represent actual changes to the 

design of areas in London, or circumstantial changes such as differences in 

weather, obstruction of views, or temporary construction.  

Observing dramatic changes to areas in London using Google Street View 

imagery is also challenging due to the fact that some of the biggest changes are 

often focused on very compact areas. For example, over the last ten years, the 

regeneration of the Lower Lea Valley area in East London for the 2012 Olympics 

and the redevelopment of the Kings Cross area next to the St. Pancras Eurostar 

station have made remarkable changes to London, but each in its own small area. 

Thus, in order to track changes in scenicness over time, a far more comprehensive 

set of images, at an even higher resolution than already gathered, may be needed, 

including ones taken in public outdoor areas inaccessible to cars. For example, 

Granary Square in Kings Cross is a beautiful pedestrianised public space featuring 
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choreographed water fountains. Gaining imagery of such areas may soon be 

possible thanks to Google’s increasing use of Street View cameras on backpacks, 

scooters and tricycles to augment their image database to cover new types of 

locations. 

Nonetheless, analyses using convolutional neural networks have helped us to 

dramatically improve our models to estimate the scenicness of our environment. 

Our research shows that beauty – once though to be in the eye of the beholder and 

thus an area of investigation impenetrable by computers – can in fact be decoded 

by computer algorithms. We argue that the ability to estimate scenicness at large 

scale and at speed using neural networks opens up new avenues for future social 

science research to investigate the connection between the beauty of the 

environment and various aspects of human life, from our wellbeing to the economic 

prosperity of a city. 
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SECTION II 
What is the connection between scenicness 
and wellbeing? 
 
We explore the connection between beautiful 

scenery and different types of wellbeing. We 

specifically investigate the connection between 

scenicness and two different measures of 

wellbeing: (1) experienced wellbeing, as measured 

though happiness ratings submitted via the mobile 

phone app Mappiness, and (2) evaluative 

wellbeing, specifically life satisfaction and mental 

distress, as measured by responses to the annual 

UK Household Longitudinal Study, Understanding 

Society. Evidence of a quantitative link between 

the aesthetics of the environment and happiness 

could inform public policy and the types of 

investments we want to make to improve human 

wellbeing. 
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Chapter 5 
Scenicness and experienced wellbeing: An 
analysis using data from the Mappiness mobile 
phone app 

5.1 Introduction 

Areas of great natural beauty have long been considered to be locations in which 

one might hope to feel a greater sense of happiness. What characteristics of such 

environments might be driving such an effect? Is it simply the overwhelming 

presence of nature, or might the beauty of these environments be crucial? If 

aesthetics play a key role, might this apply in built-up environments too, where 

policymakers, urban planners, property developers and architects can affect the 

design of the places we experience, and potentially therefore our everyday 

happiness? 

The relationship between the environment and subjective wellbeing – commonly 

known as happiness – has been the subject of much scientific research (Bratman et 

al., 2015a; Bratman et al., 2015b; Hartig et al., 2003; MacKerron & Mourato, 2013; 

van den Berg et al., 2010; White et al., 2013a; for a full literature review, see 

Chapter 2) as well as parliamentary briefings (Parliamentary Office of Science and 

Technology, 2016). Experimental and survey-based studies have produced an array 

of results suggesting that natural habitats are associated with greater happiness, a 

result usually explained with reference to the ‘biophilia hypothesis’, which suggests 

that evolutionary pressures have led to a human preference for a connection with 

nature (Kellert & Wilson, 1995). However, to date, researchers in this domain have 

had to contend with considerable limitations in measuring happiness levels as 

humans experience different environments (Diener et al., 1999) as well as in 

measuring the aesthetics of those different environments. 

Could the aesthetics of an environment therefore have a crucial effect on 

happiness that studies to date have not been able to capture? We measure 

happiness using a novel large-scale dataset on everyday happiness ratings, 

Mappiness, an Apple iOS smartphone app that allows users throughout the UK to 

track their happiness (MacKerron & Mourato, 2013). The Mappiness app builds on 

the Experience Sampling Method (ESM), where participants are asked to use a 

diary to record details of their wellbeing and current situation at prespecified times 
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of the day (Hektner, Schmidt & Csikszentmihalyi, 2007; Shiffman, Stone & Hufford, 

2008). The use of a smartphone app to poll participants allows MacKerron and 

Mourato (2013) to scale this methodology to tens of thousands of participants, as it 

reduces the prohibitively high burden of the original diary-based method (Kahneman 

et al., 2004). Crucially, the smartphone app is also able to use GPS to automatically 

record the location of a participant when they respond to the survey.  

Combining the Mappiness ratings with our Scenic-Or-Not dataset (introduced in 

Chapter 3) gives us the unique opportunity to discover whether individuals 

encountering more scenic environments during their everyday life experience 

greater levels of happiness. We also investigate if such a relationship holds even in 

built-up environments, rather than natural habitats, even after taking other 

environmental measures such as green space into account.  

5.2 Data and methods 

Scenic ratings 

We measure scenicness using crowdsourced scenic ratings from Scenic-Or-Not 

(as detailed in Chapter 3). Scenic-Or-Not presents users with random geotagged 

photographs of Great Britain, which visitors can rate on an integer scale 1 – 10, 

where 10 indicates “very scenic” and 1 indicates “not scenic”. The Scenic-Or-Not 

database has over 217,000 images, sourced from Geograph, covering 92.5% of the 

234,429 land mass 1 km grid squares of Great Britain. To date, over 1.5 million 

ratings have been submitted. We use the mean rating of images that have been 

rated at least three times, and aggregate these ratings at the level of Lower Layer 

Super Output Area (LSOA). LSOAs are areas defined by the Office for National 

Statistics for statistical analyses that have a mean population size of around 1,600 

and an area of between 0.018 square km to 684 square km. 

In order to ensure scenicness ratings are easily comparable to other dummy 

variables included in our analysis, we rescale the scenicness ratings to 0 to 1 prior 

to aggregating scenicness measurements on an LSOA basis. After scaling and 

aggregating scenic ratings per LSOA, the range of scenic ratings is 0.00 to 0.78. In 

other words, no LSOA has a perfect score of 1. For all of England – the region we 

use in our final analysis – we have 929,125 votes for 129,056 images, which gives 

us ratings for 16,907 LSOAs out of the 32,482 LSOAs in England. Following 

combination with the Mappiness dataset as described below, our final scenicness 

ratings dataset contains 858,773 votes for 119,377 images, covering 14,228 

LSOAs. 
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Mappiness data 

We use individual reports of momentary happiness from Mappiness (MacKerron 

& Mourato, 2013) in order to better understand how scenic areas can affect 

people’s wellbeing (Fig. 5.1). 

 

 
 
Figure 5.1. Mappiness screens.  
Mappiness is a pioneering large-scale ESM study that collects UK-wide data via an Apple 
iOS app (MacKerron & Mourato, 2013). 
 

In the Mappiness app, participants choose how often and during which time 

periods they should be polled; participants are then asked to report their wellbeing 

at random moments during these times. Participants also respond to questions such 

as whether they are alone or with someone else, their current location (such as 

home, work, indoors or outdoors) and what activities they are taking part in (Tab. 

5.1). At the time of polling, the app uses the location services of the phone to 

determine and record the current location of the participant. Figure 5.2 depicts how 

happiness ratings from the Mappiness app vary over time. 

We consider a response to be valid only if the start time for the response is within 

60 minutes of the most recent prompt by the iOS app, and the questionnaire is 

completed within 5 minutes. We only include responses that have a device-reported 

GPS location accuracy of +/- 250m or better, and where the participant has reported 

that they are either “outdoors” or “in a vehicle”. We further exclude measurements 

collected in LSOAs where no Scenic-Or-Not image falls. The resulting dataset 

constitutes 138,407 measurements of momentary happiness, gathered from 15,444 

users between June 2010 and June 2013, covering 14,228 LSOAs out of the 

32,482 LSOAs in England. The users report a median household income of 
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approximately GBP £48,000, with a mean age of 35, and a female-to-male ratio of 

48:52.  

 
Table 5.1. Mappiness activities. 
The table below lists all the Mappiness activities that respondents can choose. All the 
activities are included as control variables in our analysis. 

 

 
 

Working, studying Texting, email, social media 

In a meeting, seminar, class Browsing the Internet 

Travelling, commuting Watching TV, film 

Cooking, preparing food Listening to music 

Housework, chores, DIY Listening to speech/podcast 

Admin, finances, organising Reading 

Shopping, errands Theatre, dance, concert 

Waiting, queueing Exhibition, museum, library 

Childcare, playing with children Match, sporting event 

Pet care, playing with pets Walking, hiking 

Care or help for adults Sports, running, exercise 

Sleeping, resting, relaxing Gardening, allotment 

Sick in bed Birdwatching, nature watching 

Meditating, religious activities Hunting, fishing 

Washing, dressing, grooming Computer games, iPhone games 

Intimacy, making love Other games, puzzles 

Talking, chatting, socialising Gambling, betting 

Eating, snacking Hobbies, arts, crafts 

Drinking tea/coffee Singing, performing 

Drinking alcohol Something else (version < 1.0.2) 

Smoking Something else (version >= 1.0.2) 
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Figure 5.2. Measuring happiness with data from the Apple iOS app Mappiness.  
(a) Here we show how happiness varies over the year 2012. Trends and oscillations in the 
measurements suggest that happiness seems to vary depending on factors such as the 
month or day of the week. (b) We aggregate happiness ratings for all months. Visual 
inspection suggests that people tend to be less happy during the winter months. (c) 
Aggregation of happiness ratings by the day of the week shows that people are happiest at 
the weekends. Location data from Mappiness also allows us to visualise how happiness 
ratings might vary geographically. Across all parts of the figure, colour coding is based on 
breaks of equal intervals of aggregated weekly happiness ratings. 

 

Fixed effects model 

In order to determine how characteristics of the environment relate to changes in 

individuals’ reported happiness levels, we use a fixed effects analytic approach, of 

the style commonly used in panel data analysis. We choose this approach as the 

fixed effects model helps us capture possible effects of characteristics of an 

individual that do not change across time, such as personality traits and gender, 
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which may correlate both with our outcome variable, happiness, and the other 

explanatory variables in our model (Wooldridge, 2009). In this way, we account for 

potential effects of individual characteristics on subjective wellbeing (Diener et al., 

1999). 

People may visit scenic environments with family or friends, when the weather is 

particularly good, when deciding to take a break in the rolling countryside, or simply 

for some exercise. As all these factors themselves can contribute to people’s 

happiness, we include a variety of control variables in our model, specifically: 

companionship, activities (such as walking, sports or gardening) and weather 

conditions. We also consider the time of day, separately for Monday to Friday or 

weekends and bank holidays. To account for the fact that usage of the Mappiness 

app may itself affect happiness levels, we control for the number of previous 

responses by the same participant. We note that Mappiness measurements drawn 

from the same individual or same LSOA are unlikely to be independent. In order to 

ensure that such dependencies are accounted for in our statistical analysis, we 

cluster our standard errors on both the individual and LSOA level.  

Our basic fixed effects model for estimating happiness in scenic environments is 

therefore as follows: 

          !! Hilt =α i +βs 'sl +βp 'pit +βr 'rlt +βq 'ql +εilt                                   
 

where !Hilt H!"#  is an individual’s self-rated happiness, scaled from 0 (“not at all 

happy”) to 100 (“extremely happy”) at time !t  and location !l ;!α i is the unobserved 

individual-specific constant, s!  is the scenic rating of the LSOA l; !p  is a set of 

individual context control variables including companionship, activity; !r  is a set of 

time-variant weather control variables applying to a particular location, such as wind 

speed, cloud cover and temperature; and !q  is a set of environmental control 

variables that do not vary through time, such as percentage of green space, 

whether a setting is natural or built-up, whether an area is urban, suburban or rural, 

and the income of local inhabitants.  

 

Akaike weights (AICw) 

In order to determine which model best captures variance in the data on 

happiness, we calculate the Akaike weights of the models (AICws), following the 

method proposed by Wagenmakers and Farrell (2004). We derive AICws by first 

identifying the model with the lowest AIC. For each model, we then calculate an AIC 

difference, by determining the difference between the lowest AIC and the model’s 
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AIC. We next determine the relative likelihood of each model. To determine the 

AICws, we normalise these likelihoods, such that across all models they sum to 1. 

The resulting AICws can be interpreted as the probability of each model, given the 

data. 

 

Weather data 

Data on weather conditions has been taken from the Met Office Integrated Data 

Archive System (MIDAS) database (Met Office, 2006a; Met Office 2006b). In our 

analysis, we control for potential effects on happiness of wind speed, cloud cover, 

visibility, temperature, hours of daily sunshine and rain. 

 

Green land cover data 

Data on green space per LSOA has been taken from the Generalised Land Use 

Database Statistics for England 2005 (Department for Communities and Local 

Government, 2007). 

 

Urban, suburban and rural classifications 

“Urban”, “suburban” and “rural” areas are defined using data from the 2011 

Rural-Urban Classification (Office for National Statistics, 2013). We define “urban” 

LSOAs to be LSOAs in the category “Urban Major Conurbation”. LSOAs in the 

remaining urban categories in this classification are deemed “suburban”. In our final 

analysis, we consider data for the 3,226 urban LSOAs, 6,432 suburban LSOAs and 

4,570 rural LSOAs for which we have scenicness and happiness data. 

 

LSOA-level income data 

As a metric of the economic environment an individual may be passing through 

at a given point in time, we consider the median household income of each LSOA, 

determined using Experian Demographic Data (Experian, 2011). 

 

Land cover data 

To determine whether the environments that individuals experience are natural 

or built-up, we use data on land cover from the 25m-resolution UK Land Cover Map 

2007 (LCM) (Morton et al., 2014). Table 5.2 lists which land cover types have been 

deemed to be natural versus built-up. 

 
  



 77 

Table 5.2. Land cover data. 
This table shows which land cover types from the 25m-resolution UK Land Cover Map 2007 
(LCM) (Morton et al., 2014) have been deemed to be natural, and which have been deemed 
to be built-up.  
 
LCM2007 class  Habitat 

Broadleaved woodland  Natural 

  

  
Coniferous woodland 

Arable and Horticulture 

Improved Grassland 

Rough Grassland 

Neutral Grassland 

Calcareous Grassland 

Acid Grassland 

Fen, Marsh and Swamp 

Heather 

Heather grassland 

Bog 

Montane habitats 

Inland Rock 

Salt water 

Freshwater 

Supra-littoral Rock 

Supra-littoral Sediment 

Littoral Rock 

Littoral Sediment 

Saltmarsh 

Urban (including Bare and Urban) Built-up 

Suburban (including Urban industrial and Urban suburban) 

5.3 Results 

Table 5.3 presents the results of our analysis. Visual inspection of this table 

reveals that the directions of the relationships between many of the control variables 

and happiness are in line with what we might intuitively expect, and accord with 

previous research. For example, commuting is negatively associated with 

happiness (Stutzer & Frey, 2008) while leisure activities such as resting, gardening 

(Ferrer-i-Carbonell & Gowdy, 2007), walking (Richards et al., 2015) and spending 
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time with family and friends (Lelkes, 2006) are positively associated with happiness. 

Rain is associated with reduced happiness, while higher temperatures and more 

hours of sunshine per day are associated with increased happiness (Rehdanz & 

Maddison, 2005). Crucially however, we find that people do report themselves to be 

happier when in a more scenic location (β  = 3.527, CI = [2.551, 4.504], N = 138407, 

p < 0.001), even after controlling for weather, activities, companionship, weekdays 

or weekends, and previous usage of the Mappiness app. 

!
Table 5.3. Is happiness greater in more scenic locations? Estimated model 
parameters for fixed effects model. 
The dependent variable is Happiness, scaled to 0-100. Note that while all the activities that 
people report on in the Mappiness app have been included in the model (Tab. 5.1), we only 
report the activities that we expect to be common in scenic environments. We find that 
people are happier when in more scenic locations, even after accounting for environmental 
factors such as presence of green space, or whether the location is a built-up area or a 
natural habitat. 
 

 Model 1: scenicness only  Model 2: scenicness + environmental 
variables 

 Coeff. 95% C.I.  Coeff. 95% C.I. 
Environment 
variables 

     

Scenicness 3.527*** [2.551, 4.504]  2.770*** [1.757, 3.783] 
Natural habitat  –   0.574*** [0.303, 0.844] 
Percentage of 
green space 

–   -0.451 [-0.999, 0.0979] 

Area-level median 
household income 

–   -0.255 [-0.654, 0.144] 

Urban  –   -0.282 [-0.668, 0.103] 
Rural –   0.608*** [0.263, 0.954]  
Suburban (base 
category) 

–   –   

Participant is...       
Home 0.375 [-0.113, 0.862]  0.442 [-0.0452, 0.930] 
Work -3.252*** [-3.764, -2.739]  -3.217*** [-3.730, -2.705] 
Elsewhere (base 
category) 

–   –  

      
Companionship      
Spouse, partner, 
girl/boyfriend 

4.215*** [3.858, 4.572]  4.144*** [3.787,4.501] 

Children 0.564* [0.0622, 1.066]  0.556* [0.0543,1.058] 
Other family 
members 

1.278*** [0.897, 1.659]  1.196*** [0.812,1.580] 

Colleagues, 
classmates 

0.0327 [-0.804, 0.869]  0.00123 [-0.833,0.835] 

Clients, customers 2.593*** [1.311, 3.876]  2.566*** [1.280,3.853] 
Friends 4.500*** [4.155, 4.846]  4.441*** [4.092,4.790] 
Other people 
participant knows 

-1.486*** [-2.147, -0.826]  -1.531*** [-2.192,-0.869] 
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Selected Activities      
Travelling, 
commuting 

-2.216*** [-2.517, -1.914]  -2.214*** [-2.517, -1.911] 

Sleeping, resting, 
relaxing 

1.204*** [0.563, 1.845]  1.133*** [0.494, 1.773] 

Talking, chatting, 
socialising 

4.202*** [3.853, 4.552]  4.193*** [3.844, 4.542] 

Eating, snacking 1.413*** [1.009, 1.816]  1.426*** [1.022, 1.829] 
Walking, hiking 3.918*** [3.513, 4.324]  3.857*** [3.453, 4.261] 
Sports, running, 
exercise 

7.221*** [6.530, 7.913]  7.186*** [6.495, 7.878] 

Gardening, 
allotment 

3.955*** [3.103, 4.807]  3.958*** [3.105, 4.811] 

Birdwatching, 
nature watching 

4.143*** [3.233, 5.053]  3.979*** [3.064, 4.893] 

Hunting, fishing 4.994*** [2.275, 7.713]  4.755*** [2.051, 7.460] 
+ 33 further 
activity dummies 

Yes   Yes  

      
Weather      
Wind speed -0.0326** [-0.0551, -0.0101]  -0.0332** [-0.0557, -0.0107] 
Cloud cover -0.0845*** [-0.129, -0.0398]  -0.0879*** [-0.133, -0.0431] 
Visibility 0.0000297 [-0.0000559, 

0.000115] 
 0.0000248 [-0.0000608, 

0.000110] 
Temperature 0.0822*** [0.0561, 0.108]  0.0832*** [0.0571, 0.109] 
Hours of daily 
sunshine 

1.149*** [0.772, 1.525]  1.124*** [0.748, 1.501] 

Rain -0.553*** [-0.834, -0.272]  -0.553*** [-0.835, -0.272] 
      
Hours of 
weekday/weekend 
and bank holiday 
dummies (3-hour 
blocks) 

Yes   Yes  

Mappiness usage 
dummies 
(participant's 
response, 1, 2-11, 
12-51) 

Yes   Yes  

Observations 138,407   138,407  
Groups 
(participants) 

15,444   15,444  

Groups (LSOAs) 14,228   14,228  
R2 11.6%   11.6%  

 

* p < 0.05, ** p < 0.01, *** p < 0.001 
 

Comparing scenic environments to natural, green and rural environments 

However, this analysis alone is not enough to allow us to determine whether the 

aesthetics of an environment play a role in happiness that goes beyond the role of 

nature that previous studies have considered. Indeed, intuitively, we may 

understand scenic environments to be akin to natural environments or green 

spaces. Similarly, it seems reasonable to suggest that the most scenic areas of the 
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country may be rural areas rather than urban areas. We explore to what extent 

scenicness differs from these environmental factors. 

 

 
Figure 5.3. Scenic and unscenic images from Scenic-Or-Not.  
(a) The four most scenic images in England. Visual inspection suggests that scenic images 
are primarily composed of natural landscapes. They not only contain large areas of green 
space, but also mountainous landscapes and water features. (b) A sample of the most 
unscenic images. Such images tend to be taken in built-up areas and might include dense 
road networks or abandoned rubbish. However, natural areas can also be rated as highly 
unscenic if industrial structures obstruct the naturally scenic view or if they appear to be 
largely featureless or desolate. (c) A sample of the top 5% of scenic images in built-up 
locations. Scenic images in built-up locations can include a variety of features such as 
quaint villages, structures such as bridges, castle-like structures, and park lakes. 
Photographers of scenic images from top to bottom: © Copyright Richard Swales, © 
Copyright Tony Atkin, © Copyright Tom Richardson, © Copyright Helen Wilkinson; 
Photographers of unscenic images from top to bottom: © Copyright Peter Whatley, © 
Copyright David Long, © Copyright Mick Garratt, © Copyright Doug Lee; Photographers of 
scenic built-up images from top to bottom: © Copyright Bob Jones, © Copyright Phil D Mike 
Searle, © Copyright Glyn Baker. Copyright of the images is retained by the photographers. 
Images are licensed for reuse under the Creative Commons Attribution-Share Alike 2.0 
Generic License. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-sa/2.0/. 
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In order to determine how scenicness ratings compare to classifications of 

environments as natural or built-up, we use land cover data (Morton et al., 2014) to 

categorise the geo-located coordinates of each image for which we have a scenic 

rating as either a natural environment or a built-up environment. We find that the 

scenic ratings in natural environments (M = 4.16, Mdn = 4.14) do tend to be higher 

than the scenic ratings in built-up environments (M = 2.86, Mdn = 2.60;  

W = 326330000, N = 119377, p < 0.001, Wilcoxon rank sum test with continuity 

correction). Similarly, using data from the 2011 Rural-Urban Classification (Office 

for National Statistics, 2013), we find that scenicness is greater in rural 

environments (M = 4.19, Mdn = 4.14) than in urban and suburban environments 

combined (M =  3.33, Mdn = 3,20; W = 703750000, N = 119377, p < 0.001, 

Wilcoxon rank sum test with continuity correction). However, as Figure 5.3 

illustrates, images with low scenic ratings are not always taken in built-up 

environments, such that the distributions of scenic ratings in natural and in built-up 

environments do overlap (Fig. 5.4). 

 

 
 
Figure 5.4. Scenicness in built-up versus natural locations.  
Scenic ratings tend to be higher in natural environments (marked green) than in built-up 
environments (marked grey). However, the distributions of ratings exhibit considerable 
overlap.  

 

We next compare scenicness to green space using data on the percentage of 

green land cover per LSOA (Department for Communities and Local Government, 
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2007), in line with a previous analysis of Scenic-Or-Not data and relationships to 

green space (Seresinhe, Preis & Moat, 2015). We find that scenicness is correlated 

with the percentage of green space, although the effect size is not very high (rτ 
(119375)  = 0.20, p < 0.001, Kendall’s rank correlation). 

To summarise, scenic ratings are not entirely determined by whether an image 

was taken in a natural, built-up, urban, suburban or rural environment, and are not 

equivalent to measurements of green space (Fig. 5.5) 

 

 
Figure 5.5. Are scenic environments simply green or natural environments?  
We explore whether scenic environments are simply natural environments or areas with 
abundant green space. (a) We calculate the mean scenic rating of all Scenic-Or-Not 
photographs taken for each LSOA and depict these ratings using quantile breaks. Popular 
notions of scenic areas such as the Lake District and the Peak District are clearly visible on 
the map. (b) In order to understand whether scenic environments are simply green or natural 
environments, we consider data on the percentage of green land cover per LSOA 
(Department for Communities and Local Government, 2007), depicted here using quantile 
breaks. (c) We also consider data on land cover types (Morton et al., 2014), which we use to 
classify locations as natural or built-up environments. We find that scenic ratings are not 
equivalent to measurements of green space and are not entirely determined by whether an 
image was taken in a natural or built-up environment (see main text for analysis). 
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We investigate whether a relationship between scenicness and happiness is still 

found once these more traditional environmental measurements are included in the 

model. We determine the individual’s location at the time of polling, and consider 

whether the individual is located in a natural or built-up setting, an urban, suburban 

or rural environment, and what the percentage of green land cover is in the 

surrounding LSOA. As an additional check, we also include the median household 

income per LSOA (Experian, 2011) as a control variable, as scenic areas may also 

be the areas in England in which inhabitants have higher incomes. 

Again, Table 5.3 presents the results of our analysis. While our study accords 

with the hypotheses that people are happier in natural habitats (β  = 0.574, CI = 

[0.303, 0.844], N = 138407, p < 0.001) and in rural locations (β  = 0.608, CI = 

[0.263, 0.954], N = 138407, p < 0.001), we still find that participants report 

themselves to be happier when in more scenic areas (β  = 2.770, C.I. = [1.757, 

3.783], N = 138,407, p < 0.001), even after controlling for this wide range of other 

characteristics of the local environment (Fig. 5.5). Interestingly, our analysis does 

not provide strong evidence of an effect of green space on happiness (β = -0.451, 

CI = [-0.999, 0.0979], N = 138407, p = 0.107), potentially because the variance in 

subjective wellbeing attributed to green space in previous studies has been 

captured by measures of whether the surrounding habitat is natural, rural or indeed 

scenic. 

In these analyses, Scenic-Or-Not ratings have been rescaled from the original 1 

(not scenic) to 10 (very scenic) scale rating to a 0 - 1 scale. Thus, an increase of 1 

additional unit of scenicness in our analysis translates to an increase of 9 in the 

Scenic-Or-Not rating of a neighbourhood. On this basis, the predicted increase in 

happiness for each increase of 1 in the Scenic-Or-Not rating is 0.308 on the 0–100 

happiness scale. The predicted increase in happiness of someone moving from a 

neighbourhood with the lowest scenicness rating of 1 to a neighbourhood with a 

scenicness rating in the top 10% quartile (i.e., a scenicness rating above 4.67), 

would therefore be 1.130 points on the 0–100 happiness scale. This is slightly 

below the increase in happiness observed when participants are sleeping, resting or 

relaxing (1.133), and greater than the increase in happiness observed when moving 

from a built-up environment to a natural environment (0.574) or when moving from a 

suburban environment to a rural environment (0.608). In the same fashion, the 

predicted increase in happiness of someone moving from a neighbourhood with the 

lowest possible scenicness rating of 1 to a neighbourhood with the highest possible 

scenicness rating of 10 would be 2.770 points on the 0–100 happiness scale. This 

effect is similar in size to the increase in happiness observed when participants are 
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listening to music (2.336) and the decrease in happiness observed when 

participants are commuting (-2.214) (Fig. 5.6). 

 

 
 

Figure 5.6. Happiness is greater in scenic settings.  
Coefficients of selected predictor variables based on results of a fixed effects model. The 
dependent variable is Happiness, scaled to 0-100, and the coefficient size reflects the 
change in happiness rating associated with a change of one unit in the given predictor 
variable. As urban planners and policymakers have the ability to influence the aesthetics of 
built-up settings, we investigate the effect of scenicness on people's happiness when 
individuals are located in a built-up rather than a natural location. We find that even within 
built-up areas, people are still happier when the area is more scenic (right hand panel). 

 

Finally, in order to explore whether data on scenicness can improve our 

understanding of environmental influences on happiness, given the explanatory 

power already offered by traditional environmental measurements, we compare 

three models. All three models contain the contextual control variables, such as 

weather, companionship and activities. The first model includes only data on 

scenicness. The second model includes data on scenicness as well as the more 

traditional measurements of the local environment: whether Mappiness users were 

in a natural habitat, urban, suburban or rural environments; data on green space; 

and area-level median household income. The third model includes these traditional 
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measurements yet excludes scenicness. In order to compare the fit of the models to 

each other, we calculate Akaike weights (AICw) following the method proposed by 

Wagenmakers and Farrell (2004). These weights can be interpreted as the 

probability of each model, given the data. Table 5.4 illustrates that there is very little 

evidence for the model that omits the data on scenicness. Instead, we find the 

strongest evidence for the model that includes data on scenicness plus traditional 

measurements of the characteristics of the environment. 
 

Table 5.4. Comparing models of the influences of location characteristics on 
happiness ratings. 
To determine which model provides the best fit for predicting happiness, we calculate Akaike 
weights (AICw), which can be interpreted as probability of each model given the data 
(Wagenmakers & Farrell, 2004). We find very little evidence for the model that does not 
include the data on scenicness. Instead, we find the strongest evidence for the model that 
includes both the traditional environmental measurements and the crowdsourced 
measurements of scenicness. 
 

Models AIC AICd AICw 

With Scenicness only 1144476 51.8 < 0.001 

With Scenicness and Traditional Environmental 

Measurements 1144424 0 > 0.999 

With Traditional Environmental Measurements Only 1144465 40.8 < 0.001 

 

Scenic environments or taking a break 

One further concern that could be raised about in-situ analyses of the 

relationship between characteristics of the environment and subjective wellbeing is 

that people may visit scenic or natural areas when they have the opportunity to take 

a break from their everyday routine. The Mappiness activity questions do allow us to 

measure whether individuals are undertaking activities that might be associated with 

holidays, such as sleeping, resting and relaxing, and we include these 

measurements in our fixed effects analysis. However, in order to verify that the 

holiday effect is not confounding our analysis, we check whether the relationship 

between scenic environments and greater happiness still holds for individuals on 

weekends and bank holidays and when they are not at home or at work, when it 

could be argued that people might be more likely to be at leisure or taking a break 

from their daily routine. We find that the link between scenic areas and greater 

happiness is still robust (β  = 4.261, C.I. = [2.550, 5.972], N = 35967, p < 0.001).  
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Scenic environments and built-up settings 

While there is limited scope to improve the beauty of natural settings, urban 

planners and policymakers do have the ability to influence the aesthetics of built-up 

areas (Reynolds, 2015). We therefore split our dataset into data for built-up 

locations versus natural locations, and investigate whether the relationship between 

scenicness and happiness holds in both. Although the effect size is larger in natural 

settings, we find that within built-up locations too, people report themselves to be 

happier when in more scenic locations (natural: β  = 5.756, C.I. = [3.249, 8.262], N = 

37807, p < 0.001; built-up: β  = 2.045, C.I. = [0.890, 3.200], N = 95113, p < 0.001; 

Fig. 5.6). 

5.4 Discussion 

Do individuals encountering more scenic environments during their everyday life 

experience greater levels of happiness? Here, we have presented what we believe 

to be the first study able to offer an answer to this question, through national-scale 

measurements of the aesthetics of different environments and changes in 

happiness as thousands of individuals experience these various environments 

during their everyday life. We find that people are indeed happier in more scenic 

environments, even after controlling for a range of variables such as potential 

effects of the weather and the activity an individual is engaged in at the time. 

Crucially, we find that the effect of environmental aesthetics goes beyond the effect 

of whether an individual is in a natural, green or rural environment, and that even in 

built-up environments, people are still happier when the area they are in is more 

scenic. 

This distinction between aesthetic appeal and the presence of nature is vital if 

such research is to be used to inform policy decisions about the design and 

modification of built and natural environments. Our findings provide evidence that 

for built environments to be as conducive as possible to the wellbeing of their users, 

consideration should be given not only to whether areas of nature or green space 

have been included in the design, but to whether these natural areas are attractive 

– for which appropriate maintenance may well be required – and indeed to whether 

the buildings themselves are appealing to the eye. Similarly, our results provide 

reason to believe that if policymakers allow natural environments to be blighted by 

unsightly features, these environments will no longer provide the same wellbeing 

benefits to those who visit them. 
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Our results also have consequences for theories regarding the impact of our 

surroundings on our subjective wellbeing. The analysis we report suggests that 

positive emotions we experience in attractive environments may not only be driven 

by the presence of nature, in contrast to the central tenet of the biophilia hypothesis 

(Kellert & Wilson, 1995). How might scenic settings otherwise make us feel 

happier? According to Attention Restoration Theory (Kaplan, 1995), scenes 

requiring less demand on our attention allow us to become less fatigued, more able 

to concentrate, and thus perhaps even less irritable. Such restorative settings have 

often been associated with nature, and in contrast, one can imagine that a bustling 

urban setting such as Times Square in New York City might demand our full 

attention. However, more picturesque streets with broad views and fewer 

distractions might also function as restorative settings. Settings that are more 

beautiful may also hold our interest for longer, thereby blocking negative thoughts 

(Ulrich, 1979). Furthermore, certain features of environments commonly associated 

with scenic environments, such as open spaces and spaces full of light, might make 

us feel happier simply because we feel safer (Herzog & Chernick, 2000; Loewen, 

Steel & Suedfeld, 1993). This accords with prospect-refuge theory (Appleton, 1975) 

as in such spaces one can easily observe “prospects” and avoid possible dangers. 

We do not rule out the possibility that characteristics of environments we consider 

scenic remind us of environmental characteristics that we have found beneficial at 

some point in our evolutionary history. The connection we find between 

environmental aesthetics and subjective wellbeing may therefore still be due to 

evolutionary processes, as suggested by the biophilia hypothesis, but not simply 

due to a preference for a connection with nature, in contrast to biophilia theory 

(Kellert & Wilson, 1995). 

Our analysis does come with the limitation that Mappiness users are all Apple 

iOS users. As Apple products are known for their design appeal, it might be that 

Mappiness participants are more likely to be affected by the aesthetics of their 

environment. A further concern might be that our scenicness ratings rely on 

individual photographs, which might not be wholly representative of the aesthetics 

of the local area. Ratings of photographs might also be influenced by image 

composition or the weather depicted in the image. However, despite these likely 

sources of noise, our analyses show that crowdsourced ratings of scenicness do 

help explain more variance in happiness than traditional environmental 

measurements alone. Our study takes an important step in providing evidence that 

the beauty of the environment, and therefore decisions made in the design of 

environments, might have a crucial impact on people’s everyday happiness.! !
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Chapter 6 
Scenicness and evaluative wellbeing: An 
analysis using annual panel data from 
Understanding Society 

6.1 Introduction 

In Chapter 5, we explored the connection between one aspect of our wellbeing – 

experienced everyday happiness – and scenic places. We do indeed find that 

individuals are happier when visiting more scenic locations, even after controlling for 

the presence of green space and natural habitats, as well as weather conditions, 

weekends, leisure activities and the income of local inhabitants. However, if we are 

to adequately understand the connection between scenic beauty and wellbeing, it is 

apparent that we will need to consider different aspects of our wellbeing, not only 

everyday happiness. The connection between beauty and our wellbeing might differ 

based on precisely what type of wellbeing we are considering. For example, White 

et al. (2013b) found that individuals report less mental distress when living nearer to 

the coast, but they did not find a similar association with life satisfaction. (See 

Chapter 2 for a full discussion on different measures of wellbeing). Some argue that 

measurements of experienced wellbeing, such as everyday happiness, provide a 

less distorted picture of an individual's reality, as they are commonly captured 

through such methods as the Experience Sampling Method (ESM), introduced in 

Chapter 6, where participants are asked to use a diary to record details of their 

wellbeing and current situation at prespecified times of the day (Hektner, Schmidt & 

Csikszentmihalyi, 2007; Shiffman & Stone, 2008). Thus, we do not have to rely on 

people's recollection of their experiences, which are often susceptible to biases 

(Hektner, Schmidt & Csikszentmihalyi, 2007; Kahneman et al., 2004). Others argue 

that studies based on evaluative answers regarding wellbeing, such as “how 

satisfied are you with your life overall?” might reveal more stable preferences and 

reflect how people actually make life decisions (Akay, Bargain & Jara, 2017; 

O’Donnell et al., 2014; Helliwell & Leigh, 2010).  

A more in-depth understanding of the connection between wellbeing and 

scenicness has policy implications. If such a connection is momentary, as can be 

measured by experienced wellbeing, then we might be better off investing in 

beautiful places for people to visit to help boost their daily happiness, such as 



 89 

picturesque parks or attractive recreational or social areas at work premises. If we 

find that such a connection has a lasting impact on people's lives, as can be 

measured by evaluative wellbeing, then this could justify more substantial 

investments such as improving the appearance of social housing projects, or 

beautifying urban infrastructure in the areas in which people live. 

In this chapter we explore if the connection between scenicness and wellbeing 

might hold for measures of evaluative wellbeing. Data from Understanding Society, 

the United Kingdom Household Longitudinal Study (University of Essex (UE), 2017) 

provides us with rich measurements relating to two key evaluative measures of 

wellbeing: mental distress, as measured by the General Health Questionnaire 

(GHQ), and life satisfaction. The survey is carried out on approximately 40,000 

households every year, capturing how different aspects of people's lives, including 

family life, education, employment, finance, health and wellbeing, change over time. 

The analyses presented here also have a second key goal. Our study exploring 

the connection between people's reported health and scenicness (Seresinhe et al., 

2015) provided initial evidence between scenic environments and an evaluative 

measure of physical wellbeing, self-reported health, with measurements obtained 

from the 2011 Census for England and Wales. However, in our previous study, we 

were unable to control for the potential confounding factor that healthy people might 

self-select to move to locations that are more scenic, as the data we had access to 

was provided at an aggregate level and related to one point in time alone. 

Understanding Society also provides data on self-reported health, but crucially 

offers measurements gathered over several years. Also, as the survey collects data 

on several aspects of people's lives, we are able to control for an even wider range 

of potential confounding variables. Therefore, in this chapter we also attempt to 

address the “self-selection” bias in our reported health study (Seresinhe et al., 

2015) – i.e., do people who are already physically healthy choose locations that are 

more scenic? 

Our two goals for the analyses reported in this chapter are therefore to find 

answers to the following two questions: (1) Does living in more scenic areas lead to 

less mental distress and greater life satisfaction? (2) Do individuals with high 

wellbeing self-select to move to scenic areas? 
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6.2 Method 

Wellbeing ratings 

Data on wellbeing is drawn from the first seven waves of Understanding Society, 

the United Kingdom Household Longitudinal Study, which comprises data collected 

from 2009 to 2016 (UE, 2017). The survey includes the responses of adult (age 16 

and over) members of approximately 40,000 households. Households recruited in 

the first wave are interviewed each year to capture information on changes to their 

individual and household circumstances on a wide range of themes such as family 

life, education, employment, finance, health and wellbeing. 

Mental distress is measured using the General Health Questionnaire, a 12-item 

survey asking respondents how often in the last few weeks they had been able to 

concentrate, had lost sleep over worry, played a useful role, were capable of 

making decisions, were constantly under strain, couldn't overcome their difficulties, 

enjoyed day-to-day activities, were able to face up to problems, were unhappy or 

depressed, had lost confidence, had been believing they are worthless, and had 

been reasonably happy. We recode the raw data from the Understanding Society 

survey using the widely-used 0 - 12 coding scheme (e.g. White et al., 2013a), where 

the first two categories (“not at all” or “no more than usual”) are coded as 0 and the 

last two categories (“rather more than usual” or “much more than usual”) are coded 

as 1. Summed, the GHQ scores therefore range from 0 to 12. We invert the GHQ 

scores so that higher scores indicate low mental distress. 

We extract data on life satisfaction using the global life satisfaction question 

“How dissatisfied or satisfied are you with your life overall?” from the Understanding 

Society survey. Responses range from 1 (“Completely dissatisfied”) to 7 

(“Completely satisfied”). We measure self-reported health with the question “In 

general, would you say your health is…” 1 (“Excellent”) to 5 (“Poor”). 

 

Scenic ratings 

We combine our wellbeing ratings with scenic ratings at the level of LSOA. 

LSOAs are areas defined by the Office for National Statistics for statistical analyses 

that have a mean population size of around 1,600 and an area of between 0.018 

square km and 684 square km. 

The Understanding Society survey has household responses covering 27,514 

LSOAs. However, we only have scenic ratings from Scenic-Or-Not for 11,454 of the 

27,514 Understanding Society LSOAs, and only 6,932 LSOAs have aggregated 

ratings from more than four images. Thus, we use our Scenic CNN introduced in 

Chapter 4 to predict scenic ratings for further LSOAs covered by Understanding 
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Society to expand the coverage in our study, as well as to increase the robustness 

of our scenic ratings. 

We choose to predict scenicness for Geograph images (using out Scenic-Or-Not 

CNN), rather than Google Street View images, as we achieve a higher performance 

score of 0.658 Kendall Rank Correlation for the former (See Chapter 4 for a full 

description of the different models). In our final analysis, we only include LSOAs 

that have at least four actual Scenic-Or-Not ratings, or that have four images for 

which we can predict the scenic ratings. This approach allows us to obtain scenic 

ratings for 21,390 LSOAs (Fig. 6.1).  

 

 
 

Figure 6.1. Scenic ratings available for LSOAs covered in the Understanding Society 
survey.  
Areas marked in red are LSOAs for which we have data from Understanding Society but no 
available Scenic ratings. You can clearly see in (b) that estimating scenic ratings using our 
Scenic-Or-Not CNN (Chapter 4) allow us to expand the coverage of LSOAs to many more 
LSOAs for which we have data from Understanding Society in comparison to (a). This is 
particularly helpful in urban areas where LSOAs tend to be smaller in size, and therefore not 
covered by our original Scenic-Or-Not data. 

 

In order to ensure that scenicness ratings are easily comparable to other dummy 

variables included in our analysis, we rescale both the Scenic-Or-Not ratings and 

Scenic-Or-Not CNN scenic predictions to 0 (“not scenic”) to 1 (“extremely scenic”) 

prior to aggregating scenicness measurements on an LSOA basis. After doing this, 

the range of scenic ratings is 0.052 to 0.77. In other words, no LSOA has a perfect 

score of 1. 
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Individual and household level controls 

Following similar studies (Houlden, Weich & Jarvis, 2017; White et al 2013a; 

White, et al., 2013b) that explore the connection between environmental factors, 

including green space and coastal proximity, and wellbeing, we include the following 

potential confounding variables in our analysis: age; diploma or degree level 

qualification; marital status; living with children; household income per capita; 

activity-limiting health; employment status (employed, self-employed, unemployed, 

retired, in education, family carer, other); residence type (detached, semi-detached, 

terraced, flat); household space (less than 1, 1 to 3, more than 3 rooms); 

homeowner status; and commuting time to work. 

 

Area level controls 

We also include LSOA-level environmental variables in our analysis to account 

for potential area-level confounding factors. We include percentage of green space 

and water, as obtained from the Generalised Land Use Database Statistics for 

England 2005 (Department for Communities and Local Government, 2007). We 

include whether an LSOA is “urban”, “suburban” and “rural”, as defined using data 

from the 2011 Rural-Urban Classification (Office for National Statistics, 2013). We 

define “urban” LSOAs to be those in the category “Urban Major Conurbation”. 

LSOAs in the remaining urban categories in this classification are deemed 

“suburban”. We also include deprivation data from the relevant domains of the 2010 

English Indices of Deprivation: Income Deprivation, Employment Deprivation, 

Education Skills and Training Deprivation, and Crime (Department for Communities 

and Local Government, 2011). The values of these indices increase in line with the 

proportion of people who experience deprivation in each domain. We also control 

for regional effects on the level of Government Office Region, now simply called 

“Region” by the Office for National Statistics – these regions were established in 

1994 to divide England into ten broad areas, such as “North East” and “East 

Midlands”.  

 

Analytical model 

A key challenge in our analysis is that a very small percentage of respondents 

move home, specifically 13%. A majority of the movers are not likely to move home 

more than once within the time period for which we have data. While a fixed effects 

analysis allows us to control for unobserved individual variables, in this case, such 

an analysis would not be able to capture the effect of scenicness on individuals, as 

changes in scenicness would rarely occur. We therefore use the fixed effects 



 93 

filtered (FEF) approach (Pesaran & Zhou, 2016) to evaluate if individuals report 

increased wellbeing in more scenic areas. Our basic fixed effects model is as 

follows: 

! Wit =α i + ′ziγ + ′xitβ +εit                                                          (1)
 

where !Wit  is the well-being measure (e.g. mental distress or life satisfaction) at 

time !t where ! = 1,2,… ,!,  and for individual !i  where ! = 1,2,… ,!;  !α i  are the 

unobserved individual specific effects;
 !zi  are the time invariant variables (e.g. 

scenicness) that can vary across individuals; and !xit  are variables that additionally 

change over time (e.g. age). 

The FEF approach is a two-step procedure, whereby we first estimate the fixed 

effects ( !β̂ ) on our time-varying variables ( !xit ) and compute the associated 

residuals (!!ûit ): 

ûit = yit − ˆ ʹβ xit                                                                 (2)
 

 

We then compute the time averages of these residuals: 

!!
ûi =T

−1 ûit
t=1

T

∑                                                                   (3)
 

 

We then use this as our dependent variable in a cross-section ordinary least 

squares (OLS) where we regress !!ûi  on !zi  with an intercept to compute the FEF 

estimator of our dependent variable !!γ̂ FEF : 

!!
γ̂ FEF = (zi − z )(zi − z ′)

i=1
N∑⎡⎣⎢

⎤
⎦⎥
−1

(zi − z )(ûi − û)i=1
N∑ ,

                  (4) 

 

!!α̂ FEF = û − ˆ ′γ FEFz
                                               (5) 

 

where
 

 

! = !!! !!!
!!!             (6) 
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Table 6.1. Estimates from the fixed effects filtered models. 
 
 Model 1: Less Mental 

Distress  
 Model 2: Life Satisfaction  Model 3: Self-reported  

health 
 Coeff. 95% C.I.  Coeff. 95% C.I.  Coeff. 95% C.I. 
Environment 
variables 

        

Scenicness 0.109 [-0.171,0.388]  -0.031 [-0.17,0.109]  0.108* [0.002,0.214] 
Green space (%) -0.114 [-0.318,0.09]  0.076 [-0.028,0.179]  -0.071 [-0.142,0.001] 
Water (%) 0.151 [-0.252,0.554]  0.112 [-0.09,0.315]  0.008 [-0.144,0.159] 
Urban  -0.100* [-0.196,-0.004]  -0.046 [-0.094,0.002]  -0.002 [-0.038,0.035] 
Suburban -0.098** [-0.17,-0.025]  -0.032 [-0.069,0.005]  -0.028 [-0.056,0.001] 
Rural (base cat.) –   –    –  
Income deprivation -0.111 [-0.785,0.562]  -0.438* [-0.776,-0.101]  0.180 [-0.06,0.419] 
Employment 
deprivation -0.303 [-1.05,0.444] 

 
0.235 [-0.136,0.607] 

 
-0.628*** [-0.903,-0.354] 

Education deprivation -0.241 [-0.525,0.043]  -0.332*** [-0.476,-0.187]  -0.445*** [-0.548,-0.341] 
Crime -0.254 [-0.533,0.025]  -0.314*** [-0.454,-0.174]  -0.087 [-0.192,0.018] 
Regions as dummies Yes   Yes   Yes  

Individual variables         
Age         

16-19 years old 0.117 [-0.169,0.403]  0.214** [0.073,0.355]  0.135*** [0.055,0.215] 
20-29 years old -0.153 [-0.402,0.096]  0.085 [-0.037,0.208]  0.119*** [0.049,0.188] 
30-39 years old -0.188 [-0.384,0.009]  0.030 [-0.071,0.132]  0.143*** [0.087,0.198] 
40-49 years old -0.157 [-0.321,0.008]  -0.001 [-0.089,0.088]  0.122*** [0.074,0.17] 
50-59 years old -0.077 [-0.209,0.055]  -0.004 [-0.078,0.071]  0.090*** [0.05,0.13] 
60-69 years old 0.076 [-0.011,0.163]  0.063* [0.009,0.117]  0.068*** [0.039,0.097] 
70 and older (base 
category) 

        

Diploma or degree -0.035 [-0.099,0.029]  0.083*** [0.052,0.113]  0.014 [-0.004,0.032] 
Married 0.012 [-0.174,0.198]  0.076 [-0.017,0.168]  -0.025 [-0.075,0.024] 
Divorced or 
separated -0.281*** [-0.443,-0.12] 

 
-0.129** [-0.209,-0.048] 

 
-0.014 [-0.057,0.029] 

Living with children -0.130 [-0.288,0.028]  0.070 [-0.004,0.145]  -0.013 [-0.053,0.026] 
Household incomea 0.066*** [0.037,0.096]  0.028*** [0.014,0.042]  -0.003 [-0.01,0.005] 
Activity-limiting health -0.527*** [-0.574,-0.48]  -0.189*** [-0.213,-0.165]  -0.297*** [-0.311,-0.283] 
Employment status          

Employed  0.266 [-0.15,0.681]  0.013 [-0.257,0.282]  0.065 [-0.067,0.197] 
Self-employed 0.349 [-0.076,0.775]  0.064 [-0.21,0.338]  0.095 [-0.04,0.229] 
Unemployed  -0.812*** [-1.238,-0.386]  -0.292* [-0.564,-0.02]  -0.050 [-0.184,0.084] 
Retired  0.240 [-0.186,0.665]  0.088 [-0.186,0.362]  0.035 [-0.099,0.169] 
Education/training  0.038 [-0.383,0.459]  0.121 [-0.145,0.388]  0.032 [-0.102,0.165] 
Family carer  -0.023 [-0.452,0.406]  -0.015 [-0.289,0.259]  0.051 [-0.084,0.185] 
Other  0.012 [-0.472,0.497]  -0.033 [-0.325,0.26]  0.042 [-0.102,0.185] 

Resident type         
Detached 0.215* [0.006,0.424]  -0.081 [-0.202,0.04]  0.011 [-0.052,0.074] 
Semidetached  0.228* [0.019,0.436]  -0.073 [-0.192,0.047]  0.018 [-0.044,0.08] 
Terraced  0.249* [0.039,0.458]  -0.033 [-0.153,0.088]  0.025 [-0.037,0.088] 
Flat  0.238* [0.013,0.464]  -0.066 [-0.194,0.062]  0.040 [-0.026,0.105] 
Other (base cat.)         

Household space          
< 1 rooms/person 0.207* [0.026,0.388]  0.093* [0.002,0.184]  0.030 [-0.02,0.08] 
1-3 rooms/person 0.116 [-0.009,0.242]  0.027 [-0.034,0.088]  0.016 [-0.017,0.049] 
> 3 rooms/person 
(base category) 

        

Home owner  0.147 [-0.05,0.344]  0.061 [-0.04,0.162]  -0.012 [-0.069,0.045] 
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Commuting time         
15 minutes or less 0.174** [0.069,0.279]  0.028 [-0.022,0.078]  0.046*** [0.019,0.073] 
>15-30 minutes  0.128* [0.02,0.237]  0.005 [-0.047,0.057]  0.029* [0.001,0.057] 
>30-50 minutes 0.105 [-0.004,0.214]  -0.013 [-0.066,0.04]  0.018 [-0.011,0.047] 
> 50 minutes (base 
category) 

        

Observations 146,604   146,139   151,781  
Groups  42,279   42,171 

 
  44,372  

 

* p < 0.05, ** p < 0.01, *** p < 0.001 

6.3 Results 

Does living in more scenic areas lead to less mental distress and greater life 

satisfaction? 

Table 6.1 presents the results. We find no evidence that people report better 

evaluative mental wellbeing (as measured by “mental distress” and “life 

satisfaction”) when they live in a more scenic area (mental distress: β = 0.109, CI = 

[-0.171,0.388], N = 146,604, p = 0.447; life satisfaction: β =-0.031, CI = [-0.17,0.109], 

N = 146,139, p = 0.667). This finding contrasts with the results reported in Chapter 

5, which indicate that people report greater happiness (or “experienced mental 

wellbeing”) when they visit more scenic areas. We reflect on reasons why this may 

be the case in the discussion section. We do however find that people who live in 

more scenic areas report better health (β = 0.108, CI = [0.002,0.214], N = 151,781, 

p = 0.046), in line with previous results (Seresinhe et al., 2015).  

 

Do individuals with high wellbeing self-select to move to scenic areas? 

We also address the potential confounding factor in our previous analysis, which 

is that healthy people may choose to live in more scenic areas. We do not have any 

direct data on whether or not a person has moved; we are only able to identify the 

location of a respondent at the level of LSOA. Therefore, we denote an individual as 

having moved in our analysis if the individual has responded to the Understanding 

Society survey from a different LSOA than in the previous year. Note that this will 

not capture individuals that moved house within the same LSOA.  

We then conduct a logistic regression analysis to predict whether a person will 

move or not in the following year, as well as an additional logistic regression 

analysis to predict whether a person will move to a more scenic place in the 

following year. Table 6.2 highlights that people who report better health in a given 

year are more likely to move in the next year (β = -0.0382, CI = [-0.0674,0.00895], N 

= 120,789, p = 0.010). However, we do not find evidence that they move to more 

scenic places (β = -0.030, CI = [-0.0703,0.00983], N = 120,789, p = 0.139) 
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Table 6.2. Are healthy people more likely to move the following year? 
 

 Will move   Will move to a more scenic place 
 Coeff. 95% C.I..  Coeff. 95% C.I.. 
      
Self-reported health -0.0382* [-0.0674,-0.00895]  -0.0302 [-0.0703,0.00983] 

Environment variables      
Scenicness -0.0675 [-0.393,0.258]  -8.037*** [-8.538,-7.536] 
Green space (%) -0.764*** [-0.961,-0.568]  -0.824*** [-1.090,-0.558] 
Water (%) 0.367 [-0.0282,0.762]  -0.320 [-0.990,0.350] 
Urban  -0.294*** [-0.405,-0.183]  -0.518*** [-0.677,-0.360] 
Suburban -0.0572 [-0.142,0.0272]  -0.220*** [-0.344,-0.0967] 

Rural (base category) –   –   
Income deprivation -1.947*** [-2.673,-1.222]  -1.249* [-2.225,-0.272] 
Employment deprivation 0.590 [-0.225,1.406]  0.162 [-0.930,1.255] 
Education deprivation -0.282 [-0.591,0.0284]  -0.478* [-0.900,-0.0563] 
Crime 0.445** [0.131,0.759]  -0.0938 [-0.516,0.328] 
Regions as dummies Yes   Yes  

Individual variables      
Age      

16-19 years old 1.524*** [1.262,1.787]  1.219*** [0.860,1.578] 
20-29 years old 2.039*** [1.811,2.266]  1.734*** [1.430,2.039] 
30-39 years old 1.583*** [1.362,1.805]  1.435*** [1.139,1.732] 
40-49 years old 0.975*** [0.754,1.196]  0.909*** [0.612,1.206] 
50-59 years old 0.575*** [0.352,0.797]  0.478** [0.177,0.780] 
60-69 years old 0.558*** [0.384,0.732]  0.602*** [0.363,0.841] 
70 and older (base category)      

Diploma or degree 0.0748 [-0.0234,0.173]  0.117 [-0.0149,0.250] 
Married -0.0671 [-0.171,0.0368]  0.00912 [-0.133,0.151] 
Divorced or separated 0.261*** [0.167,0.354]  0.160* [0.0315,0.288] 
Living with children -0.0397 [-0.136,0.0566]  0.00363 [-0.128,0.135] 
Household incomea 0.145*** [0.0973,0.193]  0.175*** [0.108,0.243] 
Activity-limiting health -0.0511 [-0.128,0.0255]  -0.0893 [-0.196,0.0172] 
Employment status       

Employed  0.852 [-0.332,2.036]  1.110 [-0.920,3.139] 
Self-employed 1.043 [-0.147,2.232]  1.420 [-0.616,3.456] 
Unemployed  0.834 [-0.353,2.022]  1.115 [-0.921,3.151] 
Retired  0.753 [-0.444,1.951]  0.990 [-1.055,3.034] 
In education or training  1.028 [-0.156,2.211]  1.396 [-0.638,3.430] 
Family carer  0.757 [-0.432,1.946]  1.079 [-0.957,3.115] 
Other  1.116 [-0.111,2.342]  1.647 [-0.424,3.719] 

Resident type      
Detached -0.817*** [-1.034,-0.600]  -0.917*** [-1.208,-0.625] 
Semidetached  -0.944*** [-1.155,-0.733]  -1.096*** [-1.377,-0.815] 
Terraced  -0.786*** [-0.995,-0.577]  -0.815*** [-1.092,-0.539] 
Flat  -0.489*** [-0.699,-0.278]  -0.503*** [-0.781,-0.224] 
Other (base category)      

Household space       
< 1 rooms/person -0.249** [-0.400,-0.0978]  -0.298** [-0.502,-0.0927] 
1 – 3 rooms/person -0.214*** [-0.317,-0.111]  -0.299*** [-0.441,-0.158] 
> 3 rooms/person (base 
category) 

     

Home owner  -1.171*** [-1.240,-1.103]  -1.066*** [-1.163,-0.968] 
Commuting time      
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15 minutes or less -0.222*** [-0.336,-0.108]  -0.255** [-0.411,-0.0986] 
>15-30 minutes  -0.134* [-0.253,-0.0152]  -0.168* [-0.331,-0.00589] 
>30-50 minutes 0.0109 [-0.121,0.142]  0.0609 [-0.117,0.238] 
> 50 minutes (base category)      

Observations 120,789   120,789  
Pseudo R2 0.1150   0.1294  
 

* p < 0.05, ** p < 0.01, *** p < 0.001 

6.4 Discussion 

Our previous results provide evidence that people who visit scenic areas 

experience increased happiness. As the connection between scenicness and 

wellbeing has different policy implications based on which measure of wellbeing is 

connected to scenicness, we investigate whether the connection between 

scenicness and wellbeing also holds for an evaluative measure of wellbeing, mental 

distress and life-satisfaction. We do not find any evidence that people who live in 

more scenic places report lower mental distress and higher life satisfaction. 

However, we do find evidence that people report better health in such places. Might 

adaptation explain this discrepancy? And why do we still find that scenicness is 

connected to people's evaluated physical wellbeing? 

In 1978, Brickman, Coats and Jannoff-Bulman presented the first convincing 

empirical evidence in support of the idea of a “hedonic treadmill” (Brickman, Coats 

& Jannoff-Bulman, 1978). They found that lottery winners, even after initially feeling 

very good about winning the lottery, over time did not appear to be much happier 

than a control group. The idea of hedonic adaptation has continued to gain support 

over the years. For example, Suh, Diener and Fujita (1996) find that for many major 

life events, only those that occur within the previous three months influence life 

satisfaction and positive and negative affect. 

Our results might indicate that even though individuals experience an initial 

increase in mental wellbeing when they are first exposed to a more scenic location 

(as evidenced in our happiness and scenicness study in Chapter 5), this may fade 

over time, and after some time no longer plays a part in an individual's response 

when they evaluate their general mental wellbeing. It might also simply be the case 

that when people answer questions related to their evaluative wellbeing, such as 

“how satisfied are you with your life?” they may be focusing on central aspects of 

their life such as their current level of income rather than other general factors that 

might also be important to them such as a great climate (Schkade & Kahneman, 

1994; Kahneman et al., 2006). Therefore, how scenic a person’s local 

neighbourhood is might not factor into how they answer questions about their 

evaluative wellbeing. Further studies exploring how mental wellbeing changes over 
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time for those who move to scenic areas would help us understand if adaptation 

might be the reason why we do not see a connection between scenicness and 

evaluative measures of wellbeing. 

If people are adapting to scenicness, why might we still see a connection 

between scenic environments and physical wellbeing? Ball et al. (2001) suggest 

that people might participate in increased physical activity in friendly and attractive 

surroundings, so this effect could explain our observed result. Exercising outdoors 

might not be as prone to the adaptation effect, as it could become a feature of 

people’s everyday lifestyle. Thus, when individuals report on their physical wellbeing, 

this increase in physical activity associated with scenicness may be playing a role in 

their evaluations. Future research could use the scenic measures developed and 

explored in this thesis to investigate the connection between physical activity and 

scenicness on a national scale. 
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SECTION III 
What are scenic places composed of? 
 
We find that people visiting scenic locations report 

more happiness, and people who live in more 

scenic locations report better health. Yet, what are 

these scenic places composed of? Are they simply 

places abundant in nature? Are all natural areas 

beautiful? Can buildings be considered beautiful? 

The following section explores whether we can find 

answers to these questions that go beyond the 

simple explanation ‘what is natural is beautiful’. 
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Chapter 7 
Scenic beauty in Great Britain 

7.1 Introduction 

The beauty of outdoor spaces has long been considered an intangible measure 

that is difficult to quantify due to its subjective nature. Thus, outdoor beauty is often 

considered synonymous with nature, as evidenced by the major efforts taken to 

preserve areas in the countryside (Reynolds, 2015) such as Outstanding Areas of 

Natural Beauty, and the plethora of paintings depicting natural landscapes 

presented in museums. But, can we simply assume that all natural areas are 

beautiful? What environments in towns and cities might also be considered 

beautiful? In this chapter, we attempt to quantify the composition of scenic beauty 

for Great Britain. 

While individual ideas of beauty are likely to be shaped by our personal cultural 

and social experiences, there is also reason to believe that our preferences for 

certain environments are shaped by evolution (Appleton, 1975; Ulrich, 1993; 

Porteous, 2013). Such preferences may be for natural elements (Orians & 

Heerwagen, 1992; Kellert & Wilson, 1995), but also for areas with wide vantage 

points (Appleton, 1996), moderate levels of complexity (Ulrich, 1983; Kaplan, 

Kaplan & Wendt, 1972; Kaplan & Kaplan, 1989), and enclosedness (Küller, 1972). 

Thus, it is feasible to suppose that there is a collective sense of beauty that we can 

measure, and that this may not in fact coincide wholly with only natural beauty. 

Traditionally, small-scale surveys have been the most cost-effective method of 

gathering quantifiable data on what people find beautiful in outdoor spaces. 

However, such surveys have limited scope in terms of which characteristics of 

environments they can explore, and have generally only explored a handful of 

characteristics at a time, such as presence of natural elements (Arthur, 1977; Real 

et al., 2000; Arriaza et al., 2004), fractal elements (Joye, 2007; Stamps, 2002) or 

complexity (Ulrich, 1983; Kaplan, Kaplan & Wendt, 1972; Kaplan & Kaplan, 1989). 

The ability to crowdsource large amounts of data, coupled with recent advances 

in computer vision methods, is opening up new avenues for research. Of particular 

interest are Convolutional Neural Networks (CNNs), a type of neural network model 

initially popularised by LeCun et al. (1998) that has an efficient network architecture 

that is well adapted to classifying images and extracting image features. CNNs have 

been shown to be able to successfully extract information from images, such as 



 101 

object categories (Crowley & Zisserman, 2014; Sharif Razavian et al., 2014), face 

verification (Taigman et al., 2014) and place categories (Zhou et al., 2014; Zhou et 

al., 2016).  

We use such a CNN, specifically the Places CNN (Zhou et al., 2014; Zhou et al., 

2016), to extract hundreds of features from over 200,000 outdoor images from 

across Great Britain, rated via the online game Scenic-Or-Not, in order to develop a 

deeper and broader understanding of what beautiful outdoor spaces are composed 

of. We attempt to find answers to our question that go beyond the simple 

explanation “what is natural is beautiful”. Part of the research reported in this 

chapter was published in Seresinhe, Preis and Moat (2017). 

7.2 Data and methods 

Scenic-Or-Not images 

We again use data from Scenic-Or-Not (as detailed in Chapter 3) to understand 

what features of outdoor places people find beautiful. Scenic-Or-Not presents users 

with random geotagged photographs of Great Britain, which visitors can rate on an 

integer scale 1 – 10, where 10 indicates “very scenic” and 1 indicates “not scenic”. 

The Scenic-Or-Not database has over 217,000 images covering 92.5% of the 

234,429 land mass 1 km grid squares of Great Britain. To date, over 1.5 million 

ratings have been submitted. 

 

Extracting scene attributes and place categories from Scenic-Or-Not images 

For each Scenic-Or-Not image, we use the Places205 AlexNet CNN (Zhou et al., 

2014), introduced in Chapter 4, that has been trained on data from the 

Scene UNderstanding (SUN) attribute database (Patterson et al., 2014) to extract 

the probabilities of 102 scene attributes such as “trees” and “flowers”. The SUN 

attribute database contains 102 discriminative outdoor scene attributes, spanning 

materials to activities (e.g. “wire”,“vegetation”, “shopping”). We extract probabilities 

for scene attributes from the FC7 layer (the penultimate fully connected layer) of the 

AlexNet CNN. Table 4.1 lists all the scene attributes used in our analysis.  

We use the more recent Places365 CNN (Zhou et al., 2016), introduced in 

Chapter 4, trained on the Places2 dataset, a repository of 8 million scene 

photographs, to extract the probabilities of 365 place category classifications such 

as “mountain”, “lake natural”, “residential neighbourhood” and “train station 

platform”. We specifically use the Places365 CNN trained using the 152-layer 
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Residual Network (ResNet152) architecture (He et al., 2016), as this results in the 

best classification accuracy. Table 4.2 lists all place categories used in our analysis. 

 

Extracting basic characteristics from Scenic-Or-Not images 

We also explore the basic characteristics of photographs in our scenic ratings 

dataset, including their colour composition, saturation, brightness and colour 

variation. We examine each image from Scenic-Or-Not on a per-pixel level, with 

each pixel being allocated to one of eleven colours that constitute the principal 

colours in the English vocabulary (black, blue, brown, grey, green, orange, pink, 

purple, red, white, yellow). More details of this procedure and the empirical data that 

supports it can be found in Chapter 4 (Section 4.2.1). 

7.3 Results 

Visual inspection of a sample of the most highly scenic images suggests that 

they conform to widely held notions of beautiful scenery, comprising rugged 

mountains, bodies of water, abundant greenery and sweeping views (Fig. 7.1a). A 

sample of the least scenic images suggests that they are often composed of 

primarily man-made objects such as industrial areas and highways. However, 

images containing large areas of natural greenery can also be considered unscenic 

if they look drab, or if man-made objects, such as industrial plants, are obstructing 

the view (Fig. 7.1b).  
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Figure 7.1 (previous page). Top three place categories and top three scene attributes 
of sample scenic and unscenic images across Great Britain.  
(a) A sample of the top 5% scenic images seems to accord with widespread notions of 
beautiful scenery – the images are composed of rugged mountains, picturesque lakes, lush 
forests, abundant greenery, charming ruins and scenes where one can view the distant 
horizon. (b) Unscenic images appear to be mainly composed of man-made features, for 
example industrial areas, road networks, construction sites and unsightly buildings. 
However, we also find images composed of large natural areas scoring as unscenic, such 
as large areas of bland grass, or beautiful fields hindered by unsightly industrial elements in 
the distance. (c) A sample of the top 5% of scenic images in urban built-up areas reveals 
that some scenic images in urban built-up areas are reminiscent of countryside scenery, 
including water features and trees. However, the most scenic images in urban built-up areas 
can also include man-made features such as gardens, bridges or historical architecture. 
Only those places categories and scene attributes given a probability of 0.001 or higher 
have been included in the figure. Photographers of scenic images: © Copyright Gordon 
Hatton, © Copyright jerry sharp, © Copyright Andrew Smith, © Copyright Chris Allen, © 
Copyright Peter Standing, © Copyright Richard Webb. Photographers of unscenic images: © 
Copyright Oliver Dixon, © Copyright Mat Fascione, © Copyright Jeff Tomlinson, © 
Copyright Gordon Brown, © Copyright Graham Clutton, © Copyright Mike Harris. 
Photographers of scenic urban built-up images: © Copyright David Pinney, © Copyright N 
Chadwick, © Copyright David Roberts, © Copyright Jonathan Billinger, © Copyright John 
Salmon, © Copyright Mike Searle. Copyright of the images is retained by the photographers. 
Images are licensed for reuse under the Creative Commons Attribution-Share Alike 2.0 
Generic License. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by-sa/2.0/. 

 

We also look at a subset of images that are located in urban areas and do not 

consist primarily of natural land cover that might be associated with beautiful 

scenery. We differentiate urban areas from rural areas using area classification data 

from national statistics sources (Office for National Statistics, 2013; Scottish 

Government, 2012) We use data on land cover from the 25m-resolution UK Land 

Cover Map 2007 (LCM) (Morton et al., 2007) to identify images that are located in 

primarily built-up rather than natural areas. Table 5.2 lists which land cover types 

have been deemed natural versus built-up.  

The sample of images we inspect suggests that the definition of scenicness in 

urban built-up settings is more varied than in rural areas (Fig. 7.1c). It appears that 

the most scenic images in urban areas consist not only of images that might be 

reminiscent of countryside scenery – such as beautiful canals and tree-lined paths – 

but of images that also contain man-made features such as historical architecture 

and bridge-like structures. 

The number of photographs in our dataset vastly exceeds the number that could 

be reasonably examined and characterised by a human encoder. In order to exploit 

the information contained in all of the photographs in our dataset, rather than a 

small sample, we build an elastic net model that considers the following features we 

have extracted from the images: colour composition, 102 SUN scene attributes, and 

those Places365 place categories that are labelled as outdoor categories, of which 
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there are 205. (Note that these 205 outdoor categories from the Places365 CNN 

differ from the 205 outdoor and indoor categories from the Places205 CNN.) We 

specifically choose to use an elastic net model as they have been shown to perform 

well even in situations where there are highly correlated predictors (Zou & Hastie, 

2005). Elastic net models are a compromise between ridge regression and LASSO 

(Least Absolute Shrinkage and Selection Operator), both of which are adaptations 

of the linear regression model, with a penalty parameter in order to avoid overfitting. 

We use cross validation to learn the alpha parameter of the elastic net (the mix 

between ridge and lasso) as well as the lambda parameter (the penalty). 

Figures 7.2 and 7.3 present the features that the elastic net model determines 

lead to higher and lower scenic ratings, both across the dataset as a whole, and 

within urban built-up settings in particular. The model accords with intuition, 

whereby natural features are most associated with greater scenicness. These 

include “Valley”, “Coast” and “Mountain” for the full dataset (Fig. 7.2) and “Canal 

Natural”, “Pond”, “Gardens” and “Trees” for urban built-up settings (Fig. 7.3). Man-

made features such as “Construction Site”, “Industrial Area”, “Hospital”, “Parking 

Lot” and “Highway” are most associated with lower scenicness in both models. 

Interestingly however, we also see feature associations that contradict the “what is 

natural is beautiful” explanation. In both models, man-made elements can also lead 

to higher scenic ratings, including historical architecture such as “Church”, “Castle”, 

“Tower” and “Cottage”, as well as bridge-like structures such as “Viaduct” and 

“Aqueduct”. Large areas of green space such as “Grass” and “Athletic Field” appear 

to be unscenic in both models. We hypothesise that this might be due to the fact 

that images composed primarily of flat grass may lack other scenic features such as 

trees or hills. We also see features that might have been shaped by our evolved 

preferences coming out in the results. “No Horizon” and “Open Area” are both 

negatively associated with scenicness in our model containing all images (Fig. 7.2).  
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Figure 7.2. Elastic net coefficients for all areas in Great Britain.  
We build an elastic net model to identify features that might be most relevant for 
understanding scenicness. The model that includes all of our Scenic-Or-Not images accords 
with intuition, whereby natural features are most associated with greater scenicness, such 
as “Valley”, “Coast” and “Mountain”, while man-made features such as “Construction Site” 
and “Industrial Area” are most associated with lower scenicness. However, man-made 
features such as “Cottage”, “Castle” and “Lighthouse” are also associated with greater 
scenicness. In line with Appleton's prospect-refuge theory (1975), we also see features 
depicted in the results such as “No Horizon” and “Open Areas”, which might reflect 
preferences shaped by our evolution. We examine this further in the Discussion section. 
Note that the x-axes for the positive and negative coefficients have different scales. 
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Figure 7.3. Elastic net coefficients for urban built-up areas in Great Britain.  
We build an elastic net model to identify features that might be most relevant for 
understanding scenicness in built-up urban areas, which might have their own definition of 
scenicness. We do indeed find that the definition of scenicness varies for urban built-up 
locations. We see that natural features that one might more commonly encounter in urban 
settings such as “Canal Natural”, “Pond” and “Trees” are most associated with greater 
scenicness. We also see historical buildings such as “Church”, “Castle” and “Tower”, as well 
as bridge-like structures such as “Aqueduct” are associated with greater scenicness. 
Interestingly, in both models, large flat areas of green space such as “Grass” and “Athletic 
Field” are associated with lower scenicness. Note that the x-axes for the positive and 
negative coefficients have different scales. 

 

Figure 7.4 shows sample images from some of the features mentioned above. 

Indeed, we can clearly see that large areas of “Grass” might be rated as unscenic 

as they might lack interesting characteristics such as the contours found in “Valley”. 

The images with “No Horizon” appear to be those that lack a clear view of the 

surroundings. 
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Figure 7.4 (previous page). Sample images of features extracted via the Places CNN.  
For each image, we extract scenic attributes and place categories using the Places CNN 
(Zhou et al., 2014; Zhou et al., 2016), which assigns a probability score to each attribute. For 
each attribute, we split the range of probabilities into five equal intervals, and extract a 
sample image from each interval. (a) Sample images with features that are most positively 
associated with scenicness. Natural features, such as “Valley” and “Trees”, are 
understandably associated with more scenicness. However, we also find that certain types 
of man-made structures, such as “Castle” and “Viaduct”, are positively associated with 
scenicness. (b) Sample images with features that are most negatively associated with 
scenicness. As expected, images that are primarily “Industrial” or contain unsightly man-
made objects are not as scenic as those without such features. We also find that if a scene 
has a restricted field of view, such “No Horizon” images are also rated as unscenic. 
Surprisingly, we find “Grass” is also negatively associated with scenicness. It might be that 
images that contain the most grass lack other features such as trees or hill contours, 
resulting in an uninteresting scene. Photographers of “Valley” images: © Copyright Alan 
Stewart, © Copyright Anne Burgess, © Copyright Joe Regan, © Copyright Chris Wimbush, 
© Copyright Chris Eilbeck. Photographers of “Trees” images: © Copyright Alexander P 
Kapp, © Copyright Bob Jenkins, © Copyright Tom Pennington, © Copyright Colin Smith, © 
Copyright James Allan. Photographers of “Castle” images: © Copyright Gordon Hatton, © 
Copyright Iain Macaulay,  © Copyright Anne Burgess, © Copyright David Smith, © Copyright 
Ceri Thomas. Photographers of “Cottage” images: © Copyright Eirian Evans, © Copyright 
Dennis Thorley, © Copyright jeff collins, © Copyright Colin Grice, © Copyright Robert 
Edwards. Photographers of “Industrial” images: © Copyright John Lucas, © Copyright 
Jonathan Billinger, © Copyright Chris Heaton, © Copyright M J Richardson, © Copyright 
Oliver Dixon. Photographers of “Hospital” images: © Copyright Richard Webb, © Copyright 
Chris L L, © Copyright Colin Bates, © Copyright Iain Thompson, © Copyright Robin Hall. 
Photographers of “No Horizon” images: © Copyright Dr Neil Clifton, © Copyright Nigel 
Brown, © Copyright Kate Nicol, © Copyright Row17, © Copyright Oliver Dixon. 
Photographers of “Grass” images: © Copyright Stephen Pearce, © Copyright Row17, © 
Copyright Rob Farrow, © Copyright Paul Glazzard, © Copyright Mike Quinn. Copyright of 
the images is retained by the photographers. Images are licensed for reuse under the 
Creative Commons Attribution-Share Alike 2.0 Generic License. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by-sa/2.0/. 

7.4 Discussion 

We consider whether crowdsourced data generated from over 200,000 images 

from the online game Scenic-Or-Not, combined with the ability to extract hundreds 

of features from the images using the convolutional neural network Places365, 

might help us understand what beautiful outdoor spaces are composed of. We 

attempt to find answers to this question that go beyond the simple explanation that 

“what is natural is beautiful”, and explore what features contribute to beauty in urban 

and built-up settings.  

As expected, we find that natural features, such as “Coast” and “Mountain”, are 

indeed associated with greater scenicness. However, in urban built-up areas the 

definition of scenicness varies, and instead we see that natural features such as 

“Pond”, “Garden” and “Trees” are associated with greater scenicness. Surprisingly, 

we also find that man-made features can also be rated as scenic, in general as well 

as in urban built-up settings specifically. We find that historical buildings, such as 
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“Cottage” and “Castle”, as well as bridge-like structures, such as “Viaduct” and 

“Aqueduct”, are associated with greater scenicness.  

 What we find to be unscenic might provide the greatest insights. While, as 

expected, we find that man-made features such as “Construction Site” and “Parking 

Lots” are associated with lower scenicness, large areas of green space such as 

“Grass” and “Athletic Field” can also lead to lower scenic ratings. Evolution might 

have conditioned us to dislike certain natural settings that have attributes that are 

detrimental to our survival (Ulrich, 1993). For example, we seem to dislike certain 

natural settings if they appear to be drab or neglected (Akbar, Hale & Headley, 

2003), or simply uninteresting to explore (Kaplan, Kaplan & Wendt, 1972; Kaplan & 

Kaplan 1989). We also find that “No Horizon” and “Open Spaces” are associated 

with lower scenicness. This accords with Jay Appleton's theory of “prospect and 

refuge” (Appleton, 1975), which suggests that humans have evolved to prefer 

outdoor spaces where one can easily survey “prospects” and which contain “refuge” 

where one can easily hide and avoid potential dangers.  

In general, our findings have interesting insights to help inform how we might 

design spaces to increase human wellbeing. It appears that the old adage “natural 

is beautiful” seems to be incomplete: flat and uninteresting green spaces are not 

necessarily beautiful, while characterful buildings and stunning architectural 

features can be. Particularly in urban areas, features such as ponds and trees seem 

to be important for city beauty, while spaces that feel closed-off or those that are too 

open and offer no refuge seem to be spaces that we do not rate as beautiful and do 

not prefer to spend time in. This accords with research that investigates whether our 

preferences for certain environments might be shaped by evolution, which explains 

our attraction not only to natural spaces (Orians & Heerwagen, 1992; Kellert & 

Wilson, 1995) but also to ones where we might feel more safe (Ulrich, 1993) or 

spaces that are interesting to explore (Ulrich, 1983; Kaplan, Kaplan & Wendt, 1972; 

Kaplan & Kaplan, 1989). 

Our findings demonstrate that the availability of large crowdsourced datasets, 

coupled with recent advances in neural networks, can help us develop a deeper 

understanding of what environments we might find beautiful. Crucially, such 

advances in technology can help us develop vital evidence necessary for 

policymakers, urban planners and architects to make decisions about how to design 

spaces that will most increase the wellbeing of their inhabitants.  
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Chapter 8 
Scenic beauty in Rio de Janeiro 

8.1 Introduction 

In Chapter 7, we explored hundreds of visual features extracted from over 

200,000 images from the online game Scenic-Or-Not to develop a deeper 

understanding what beautiful places are composed of. We find that not only natural 

features such “Coast”, “Mountain” and “Canal Natural” are associated with greater 

scenicness, but that man-made structures such as “Tower”, “Castle” and “Viaduct” 

can also lead to higher scenic ratings. While, as expected, man-made features such 

as “Construction Site” and “Parking Lots” are associated with lower scenicness, 

surprisingly, large areas of flat green space such as “Grass” and “Athletic Field” can 

also lead to lower scenic ratings. We now explore what might be considered 

beautiful in a setting remarkably different from Great Britain. If we want to create an 

algorithm that understands beauty that generalises for the entire world, then it is 

crucial to understand how the definition of scenicness might vary in different types 

of cityscapes and landscapes. For our study, we pick the tropical city of Rio de 

Janeiro in Brazil, a highly urbanised setting amidst lush rainforest and tropical 

beaches. 

8.2 Data and methods 

Scenic-Or-Not data for Rio de Janeiro. 

We create a similar website to Scenic-Or-Not, Scenic-Rio (Fig. 8.1), to gather 

scenic ratings (between 1 – 10) from images sampled from Google Street View for 

Rio de Janeiro. Creating an even grid of 15,000 latitude and longitude points over 

the entire city, we then use these points to query the Google Street View API for 

images. Respondents to our exercise were primarily sourced from a massive open 

online course (MOOC) running on the online learning platform FutureLearn from 12 

March 2016 to 14 April 2016. In this exercise, MOOC learners were asked to rate at 

least 20 images, and overall we gathered 57,791 ratings for 4,725 images. We only 

include images in our analysis that have been rated more than three times and were 

not reported by our users to be an invalid image (e.g. an image that is no longer 

being served from Google, or that was taken inside a building). 
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Figure 8.1. Scenic Rio voting screen.  
We create a similar website to Scenic-Or-Not to gather scenic ratings for Rio de Janeiro. 
Image @ 2016 Google. 
 

Extracting scene attributes, place categories and basic characteristics from 

Scenic Rio images 

Similar to our Great Britain study (Chapter 7), for each Scenic Rio image we use 

the Places205 AlexNet CNN (Zhou et al., 2014) that has been trained on data from 

the Scene Understanding (SUN) attribute database (Patterson et al., 2014) to 

extract the probabilities of 102 scene attributes such as “trees” and “flowers”. The 

SUN attribute database contains 102 discriminative outdoor scene attributes, 

spanning from materials to activities (e.g. “wire”, “vegetation”, “shopping”). We 

extract probabilities for scene attributes from the FC7 layer (the penultimate fully 

connected layer) of the AlexNet CNN. This method is detailed further in Chapter 7.  

We use the more recent Places365 CNN trained on the Places2 dataset (a 

repository of 8 million scene photographs) (Zhou et al., 2018) to extract the 

probabilities of 365 place category classifications such as “mountain”, “lake natural”, 

“residential neighbourhood” and “train station platform”. We specifically use the 

Places365 network, trained using the 152-layer Residual Network (ResNet152) 

architecture (He et al., 2016), as this results in the best classification accuracy. This 

method is detailed further in Chapter 7. 
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Following the same procedure as our scenic images of Great Britain (Chapter 7), 

we again explore the basic characteristics of photographs in our Scenic Rio dataset, 

including their colour composition, saturation, brightness and colour variation. More 

details of this procedure and the empirical data that supports it can be found in 

Chapter 4 (Section 4.2.1). 

8.3 Results 

While the overall visual landscape of tropical Rio de Janeiro is clearly different 

from that of Great Britain, visual inspection of a sample of the most highly scenic 

images in Rio de Janeiro indicate similar characteristics of beauty as found in 

images in Great Britain, including sweeping views of coastal scenery and lush 

greenery. Of course, we also notice features that are notably different in character 

from British cities, including tropical foliage, the promenade along the coast as well 

as contemporary and cliff-side buildings more common to tropical cities (Fig. 8.2a). 

The sample of least scenic images are also similar in characteristic to images in 

Great Britain, containing images of manmade objects such as highways and pylons, 

as well as natural areas that look flat and drab. We also see buildings that appear to 

be unfinished or in need of some repair, as might be found in some poorer areas in 

Rio de Janeiro, coming out as being unscenic (Fig. 8.2b). 

Following the same process as our Scenicness in Great Britain study (see 

Chapter 7), we build an elastic net model that considers the following features we 

have extracted from the images: colour composition, 102 SUN scene attributes, and 

those Places365 place categories that are labelled as outdoor categories, of which 

there are 205 (again, note that these 205 outdoor categories from the Places365 

CNN differ from the 205 outdoor and indoor categories from the Places205 CNN). 

We specifically choose to use an elastic net model as they have been shown to 

perform well even in situations where there are highly correlated predictors (Zou & 

Hastie, 2005). Elastic net models are a compromise between ridge regression and 

LASSO (Least Absolute Shrinkage and Selection Operator), both of which are 

adaptations of the linear regression model, with a penalty parameter in order to 

avoid overfitting. See Chapter 7 for more details on this method. 
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Figure 8.2. A sample of the most scenic and least scenic images in Rio.  
Visual inspection of a sample of the most scenic images include sweeping views of coastal 
scenery and lush greenery – features that are also highly rated in Britain. However, we also 
notice the promenade along the coast as well as architecture that is more common to 
tropical cities. The sample of least scenic images contains images of manmade objects such 
as highways and pylons, which we also find unscenic in Great Britain. Less scenic areas in 
Rio are largely areas with unfinished buildings or areas in need of repair, as might be 
commonly found in poorer areas in Rio de Janeiro. Images @ 2016 Google. 
 

Figure 8.3 presents the features that the elastic net model determines lead to 

higher and lower scenic ratings in Rio de Janeiro. The coastal “Promenade”, a 

feature well known to be scenic in Rio de Janeiro, is associated with greater 

scenicness. We also see “Far Away Horizon”, as well as rainforest characteristics 

(picked up as “Green”, “Forest Road”, “Foliage” and “Forest Broadleaf”) in Rio being 

associated with greater scenicness. Similar to our Great Britain model, man-made 

features such as “Construction Site”, “Industrial Area” and “Parking Lot” are most 

associated with lower scenicness. Photos that the CNN considers to contain 

“Slums” also tend to score lower scenic ratings overall. 
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Figure 8.3. Elastic net coefficients to identify features that might be most relevant for 
understanding scenicness in Rio de Janeiro.  
We find similar characteristics to our Great Britain analysis coming out in Rio de Janeiro as 
being scenic, such as “Green”, “Field Road” and “Forest Road”. We also see the coastal 
“Promenade”, a feature well known to be scenic in Rio de Janeiro, is associated with greater 
scenicness. Unscenic characteristics are also similar to Great Britain, such as “Construction 
Site”, “Man-Made”, “Industrial Area” and “Parking Lot”. We also notice that the feature 
“Slum” leads to lower ratings for scenicness. 

8.4 Discussion 

We explore how the definition of scenicness might differ in a tropical setting with 

visual landscapes of different characteristics to Great Britain. We find many similar 

scenic features in our Rio de Janeiro model, particularly those that signify forest-like 

scenery abundant with trees, such as “Forest Road”, “Foliage” and “Forest 

Broadleaf”. Surprisingly, we do not see similar water features picked up in our 

Elastic Net analysis, such as “Coast”, which we find in our Great Britain analysis. 

However, images of the ocean are most likely being picked up as “Promenade” in 

this analysis, as Rio de Janeiro's coastline is largely a built-up area. Furthermore, 

as images included in this analysis are from Google Street View, the sample of 

coastal images has been taken primarily from streets via Google Street View 

vehicles, and therefore might contain man-made objects such as buildings or 

highways. In contrast, our Great Britain image dataset, primarily sourced from 

Geograph, most likely contains more images taken from footpaths, and thus have 

the water feature primarily in view without surrounding man-made objects.  

In terms of built-up features that are associated with greater scenicness, our Rio 

de Janeiro model only picks up “Promenade”. This may well reflect the fact that the 

Elastic Net Coefficients

RIO DE JANEIRO

Construction Site 

Man Made 

Slum

Natural Light 

Industrial Area 

Parking Lot 

Warmth 

−0.06 −0.05 −0.04 −0.03 0.00

Green

Field Road 

Saturation 

Forest Road 

Far Away Horizon 

Promenade

Foliage 

Forest Broadleaf 

0.00 0.05 0.10 0.15 0.20
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Places 365 building descriptions (e.g. “Cottage”, “Castle”, “Tower”) are more 

descriptive of building types typically seen in North American and European cities, 

and so this finding should not be taken to imply that Rio de Janeiro’s architecture 

itself is not beautiful. As we sourced photos from Google Street View in 2016, prior 

to Google's “Rio: Beyond the Map” project 

(https://beyondthemap.withgoogle.com/en-us/beyond-the-map), our dataset might 

be missing many images covering the favelas, which may have not yet been 

documented widely on Google Street View. While many people associate favelas 

with violent crime and poverty, they also feature colourful buildings, data on which 

might enrich future analyses. 

In terms of features associated with lower ratings of scenicness, our Rio de 

Janeiro model largely accords with the Great Britain model, where man-made 

objects such as “Construction Site”, “Industrial Area” and “Parking Lot” are most 

associated with lower scenicness. Unlike our Great Britain model, we do not see 

large areas of flat green spaces featuring as unscenic in Rio de Janeiro, most likely 

reflecting the hilly nature of the city. An analysis of a larger area of a country such 

as Brazil, rather than just a city, would be helpful to understand the similarities and 

differences in what people find beautiful across the globe. 
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Chapter 9 
Conclusions and future directions  

9.1 Key results 

Data generated through our increasing interactions online is allowing us to 

measure human experiences on an unprecedented scale (King, 2011; Lazer et al., 

2009; Moat et al., 2014; Watts, 2007). In this thesis, we argue that the arrival of new 

online datasets can enable us to quantify aspects of the visual environment that 

were previously costly and time-consuming to measure, but that might be crucial to 

our wellbeing, such as the beauty of our everyday environment (see also Seresinhe, 

Preis & Moat, 2015). Recent advances in computer vision, particularly in deep 

learning algorithms, are making it possible to extract insights from images at a far 

greater speed and accuracy than before (LeCun, Bengio & Hinton, 2015). In the 

research reported here, we show how these two developments present us with a 

novel opportunity to understand not only whether beautiful places have a significant 

impact on our wellbeing, but also to developer a broader understanding of what 

beautiful places are composed of – one that goes beyond the simple explanation 

“what is natural is beautiful”. We summarise the key results of our investigations 

below. 

9.1.1 Can we predict the scenicness of new places? 

For this research, we exploit crowdsourced data from the online game Scenic-

Or-Not, where users rate random geotagged photographs of Great Britain on a 

scale of 1 – 10, where 10 indicates “very scenic” and 1 indicates “not scenic”. The 

Scenic-Or-Not database contains 217,000 images, originally sourced from 

Geograph, covering 92.5% of the 1 km grid squares of Great Britain. However, the 

scenicness of an area can vary considerably within each 1 km grid square. Thus, 

the ability to predict the scenicness of new images (e.g. for an entirely new area, or 

at a high resolution such as street level), is crucial to enable future social science 

studies to investigate the connection between the beauty of the environment and 

various measures that might be important to us – from our wellbeing to the 

economic prosperity of a city. In Chapter 3 and 4, we explore different methods – 

including the exploitation of crowdsourced data, and computer vision techniques 

such as deep learning – to estimate the scenicness of places for which we do not 

have existing scenic ratings. 
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In Chapter 3, we analyse geotagged images uploaded to Flickr, combined with 

crowdsourced geographic data from OpenStreetMap, in order to estimate the 

scenicness of an area. We validate our findings using crowdsourced ratings of 

scenicness from Scenic-Or-Not. Our findings suggest that crowdsourced data from 

sources such as Flickr and OpenStreetMap do indeed contain information that can 

inform estimates of how scenic an area is. Specifically, we find that models using 

crowdsourced data can generate more accurate estimates of scenicness than 

models that use only basic census measurements such as population density or 

whether an area is urban or rural.  

However, the improvements are modest, and more accurate in rural than in 

urban or suburban neighbourhoods. This may be due to a few different factors: one 

could be that people upload photographs to Flickr for a variety of reasons, for 

instance to create a memory of an event such as a birthday party or a sporting 

event. Such photos are less likely to be accurate representations of the environment 

in general. In addition, our algorithm that identifies whether images are taken 

outdoors is not perfect, and therefore we are likely to have a number of misidentified 

indoor images in our analysis, particularly in urban and suburban areas where 

building density is high. We therefore conclude that while crowdsourced data does 

seem to provide valuable information on how people perceive their everyday 

environments, we still need to find a more accurate way to estimate the scenicness 

of the environment.  

In Chapter 4, we exploit recent advances in computer vision methods, 

particularly convolutional neural networks (CNNs), in order to evaluate to what 

degree of accuracy we can create a CNN to predict the beauty of scenes. We use a 

transfer learning approach to modify the existing Places365 CNN, which can 

already successfully detect the category of scenes, in order to train a new CNN, the 

Scenic-Or-Not CNN, to predict the scenicness of images. Training the Scenic-Or-

Not CNN with over 160,000 images rated for scenicness from Scenic-Or-Not results 

in a high level of accuracy – 0.658 for all images and 0.590 for urban built-up 

images (as measured by the Kendall’s Rank correlation between the predicted 

scenic scores and the actual scenic scores).  

However, each image from Scenic-Or-Not (primarily sourced from Geograph, an 

online crowdsourcing project that aims to collate geographically-representative 

images of every square kilometre of the British Isles) may not fully represent the 

area in which it is taken, as scenicness can vary considerably within each square 

kilometre. Generating scenic ratings at a higher resolution might help us in studies 

where we want to understand the connection between scenicness and wellbeing in 
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areas where scenicness varies considerably on a small scale, such as high-density 

urban areas. We therefore further train a new CNN, Street-View-Scenic CNN, on 

top of our previous Scenic-Or-Not CNN, using around 5,500 images rated for 

scenicness from Google Street View. With the Street-View-Scenic CNN, we achieve 

a performance score of 0.435 (the Kendall’s Rank correlation between the predicted 

scenic scores and the actual scenic scores) for Google Street View images. This 

lower score might be due to the fact that Google Street View images are often of a 

lower quality than Geograph images, being composites that often contain image 

artefacts such as blurred areas, and which are shot with a wider angle of view. 

Further extensive training using a larger dataset of labelled Google Street View 

images should help to improve prediction accuracy. 

Nonetheless, we have demonstrated that online data combined with neural 

networks can help quantify the beauty of the visual environment at an 

unprecedented scale. 

9.1.2 What is the connection between scenicness and wellbeing? 

Prior research has revealed that the connection between the environment and 

our wellbeing might vary depending on what aspect of wellbeing we measure. For 

example, White et al. (2013b) found that individuals report less mental distress 

when living nearer to the coast, but they did not find a similar association with life 

satisfaction. Therefore, in Chapter 5 and 6, we explore the connection between 

beautiful scenery and different types of wellbeing: (1) our experienced wellbeing, as 

measured though happiness ratings submitted via the mobile phone app Mappiness 

(Mackerron & Mourato, 2013), and (2) our evaluative wellbeing, specifically life 

satisfaction and mental distress, as measured through the annual survey responses 

to The UK Household Longitudinal Study, Understanding Society (University of 

Essex, 2017).  

In Chapter 5, we combine our Scenic-Or-Not ratings with happiness ratings from 

Mappiness (Mackerron & Mourato, 2013), a pioneering large-scale ESM study that 

collects UK-wide data via an Apple iOS smartphone app, to investigate whether 

individuals achieve greater levels of happiness when encountering more scenic 

environments during their everyday life experience. We also test whether this 

relationship holds in built-up environments, as opposed to natural habitats, after 

taking other environmental measures such as green space into account. We find 

that individuals are happier in more scenic locations, even when we account for a 

range of factors such as the activity the individual was engaged in at the time, 
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weather conditions, whether it was the weekend, and the income of local inhabitants. 

Crucially, the relationship we find holds not only in natural environments, but in built-

up areas too, even after controlling for the presence of green space.  

In Chapter 6, we explore whether the connection between scenicness and 

wellbeing might also hold for measures of evaluative wellbeing, specifically mental 

distress and life satisfaction, using annual data from Understanding Society, 

the United Kingdom Household Longitudinal Study of over 40,000 households that 

explores a wide range of themes such as family life, education, employment, 

finance, health and wellbeing. We also investigate whether we can confirm the 

findings of our previous study, which provided initial evidence linking scenic 

environments and self-reported health (Seresinhe et al., 2015), using an individual-

level metric of self-reported health. In this previous study, we had self-reported 

health ratings at one point in time only, and therefore we were unable to control for 

the potential confounding factor that healthy people might self-select to move to 

locations that are more scenic. As Understanding Society provides data on self-

reported health measurements gathered over several years, we attempt to address 

this possible self-selection bias. 

We find no evidence that people report better evaluative mental wellbeing (as 

measured by “mental distress” and “life satisfaction”) when living in more scenic 

locations. However, we are able to confirm our previous finding: people who live in 

more scenic areas do report better health, and we can demonstrate that this result 

is not due to healthy people choosing to move to more scenic places. 

We suggest reasons for why we might see a connection between scenicness 

and everyday happiness and scenicness and self-reported health but no connection 

between scenicness and mental distress and life satisfaction. Even though 

individuals experience an initial increase in mental wellbeing when they are first 

exposed to a more scenic location (as evidenced by our happiness and scenicness 

study in Chapter 5), this may fade in time, possibly due to adaptation (Brickman, 

Coats & Jannoff-Bulman, 1978). When people answer questions related to their 

evaluative wellbeing, such as “how satisfied are you with your life?”, they may be 

focusing on central aspects of their life such as their current level of income 

(Schkade & Kahneman, 1994; Kahneman et al., 2006) rather that the scenicness of 

their local neighbourhood. 

Why might we still see a connection between scenic environments and self-

reported physical wellbeing? We hypothesise that while people may no longer 

notice how beautiful their surroundings are, particularly when asked to reflect on big 

questions about their lives such as one's life-satisfaction, attractive settings might 
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still encourage people to continue to engage in more physical activity. After all, 

when deciding whether to go for a walk, it seems sensible that one would be more 

inclined to do so if the setting is beautiful. Research from Ball et al. (2001) suggests 

that people might participate in increased physical activity in friendly and attractive 

surroundings. 

Our results provide evidence that the aesthetics of the environments that 

policymakers choose to build – or indeed demolish – may have consequences for 

our subjective wellbeing. 

9.1.3 What are scenic places composed of? 

We find that individuals report more happiness when visiting more scenic 

locations, and that residents of more scenic places report better health. Yet, what 

are these scenic places composed of? As the beauty of outdoor spaces has long 

been considered difficult to quantify due to its subjective nature, people tend to 

gravitate towards the assumption that scenic beauty is akin to natural scenes. In 

Chapter 7, we again exploit deep learning methods to extract hundreds of 

characteristics, including scene attributes and place categories, from our corpus of 

over 200,000 Scenic-Or-Not images in order to develop a broader understanding of 

beauty that goes beyond the simple explanation that beautiful places are 

synonymous with natural places. 

We discover that the presence of natural features such as “Valley”, “Coast” and 

“Mountain” can lead to places being considered more scenic. In urban built-up 

areas, natural features such as “Canal Natural”, “Garden” and “Trees” are 

associated with greater scenicness. However, beauty isn't simply in the domain of 

the natural – characterful buildings, such as “Cottage” and “Castle”, as well as 

bridge-like structures, such as “Viaduct” and “Aqueduct”, can also lead to places 

being considered more scenic. As expected, we find that man-made features such 

as “Construction Site” and “Parking Lot” are associated with lower scenicness. 

Surprisingly, large areas of green space such as “Grass” and “Athletic Field” can 

also lead to lower scenic ratings. We also find that “No Horizon” and “Open Spaces” 

are also associated with lower scenicness. 

In Chapter 8, we explore what might be considered beautiful in a setting 

remarkably different from Great Britain: the tropical coastal city of Rio de Janeiro in 

Brazil. We see a few similar themes of beauty emerging, where scenes abundant 

with trees, such as “Forest Road”, “Foliage” and “Forest Broadleaf” are considered 

to be scenic while man-made features such as “Construction Site”, “Industrial Area”, 



 122 

and “Parking Lot” are most associated with lower scenicness. Although Rio de 

Janeiro is well known for its tropical beaches, we do not see water features such as 

“Coast” being picked up as scenic. Instead, this seems to be picked up by the 

feature “Promenade”, perhaps reflecting the built-up nature of the coastline in Rio 

de Janeiro. An analysis of a larger area of a country such as Brazil, with a visual 

environment that is remarkably different to that of Great Britain, may yield more 

interesting results to help explain the similarities and differences in what we find 

beautiful across the globe.  

The ability to crowdsource large amounts of data, combined with the advent of 

deep learning, has allowed us to develop a much broader understanding of beauty 

that goes beyond the old adage ‘natural is beautiful’. 

9.2 Limitations  

Capturing scenicness 

A key advantage of our Scenic-Or-Not dataset is the ability to exploit data on 

scenicness at a scale as large as an entire country. However, one can argue that as 

our images from Scenic-Or-Not are at a 1 km resolution, each image may not be 

fully representative of the area in which it was taken. We attempt to provide a 

potential solution to this problem for future research by creating our Street-View-

Scenic CNN, which can predict the scenicness of images sourced from Google 

Street View, thereby allowing scenic predictions at a much higher resolution. While 

further training of our Street-View-Scenic CNN is required to improve accuracy, it 

allows the possibility for researchers to gather scenic ratings for any area that 

contains Google Street View images. 360-degree views of locations would help to 

ensure that the true scenicness of an area has been captured, and to ensure that 

highly local features that could have an impact on the scenic rating of an area (such 

as a particular beautiful building, a local cluster of trees or an unsightly industrial 

structure), have not been missed out of the analysis. One final consideration is that 

Google Street View images do show some variation depending on the transient 

conditions under which they were taken, such as the weather or a vehicle 

obstructing the view. The ability to access historical data helps mitigate this, as we 

can retrieve multiple pictures of the same area under different conditions to ensure 

that we get closer to measuring what people might actually experience through their 

own repeated exposure to an area. 
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Effect size 

While we find a connection between everyday happiness and scenicness, we 

recognize that the general benefit per individual being exposed to a more scenic 

area appears to be relatively small. As summarised in Chapter 5, the predicted 

increase in happiness of someone moving from a neighbourhood with the lowest 

scenicness rating of 1 to a neighbourhood with a scenicness rating in the top decile 

(i.e. a scenicness rating above 4.67), would be 1.130 points on the 0–100 

happiness scale. This is slightly below the increase in happiness observed when 

participants are sleeping, resting or relaxing (1.133), and greater than the increase 

in happiness observed when moving from a built-up environment to a natural 

environment (0.574) or when moving from a suburban environment to a rural 

environment (0.608). While this effect is small, we argue that the impact of 

thousands or even millions of people visiting a scenic area is cumulatively very 

large, and thus has value for consideration in public policy. 

 

Causation 

We also acknowledge that our research has primarily looked at the association 

between scenicness and wellbeing, rather than establishing whether visiting more 

scenic places causes increased wellbeing. We have made several attempts to 

establish causation. Both our Mappiness and Understanding Society datasets have 

given us a great number of variables to control for, making us increasingly confident 

that the relationship we are capturing is indeed the effect of scenicness and not a 

potential confounding variable such as the effect of visiting a natural place, visiting a 

more affluent area, or the effect of relaxation. In our study on reported health, we 

control for the problem of reverse causality, and demonstrate that healthy people do 

not self-select to live in more scenic neighbourhoods.  

We also address omitted variable bias (a bias introduced by failure to measure 

some factor that might be important to the study) by conducting our analyses using 

fixed effects models. Fixed effects models allow us to control for characteristics that 

do not change over time, whether they are measured or not, such as gender, 

ethnicity or genetic makeup (Allison, 2009). In the same vein, it would also be useful 

to calculate fixed effects for the regions used in our study, such as LSOAs, to 

capture any unobserved variables of that region that we may not have been able to 

capture in our previous analyses. We do account for several environmental 

variables, from green space to natural habits to measures of deprivation, but one 

could argue that we might still have failed to measure something in the environment 

that is crucial to the study. As we have only begun to collect historical data via 
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Google Street View, we have not been able to control for unobserved regional 

effects in this study. However, as we move to an era where we can rapidly measure 

characteristics of our environments, future research will be in a position to account 

for this as well. 

9.3 Implications for policy, and future directions 

We find that individuals are happier when visiting more scenic locations, even 

when accounting for a wide range of factors such as the activity the individual was 

engaged in at the time, weather conditions, whether it was the weekend, and the 

income of local inhabitants. However, we do not find evidence that people who live 

in more scenic locations, rather than simply visiting them, report less mental 

distress or increased life satisfaction. 

Our results could indicate that people who move to more scenic areas might, in 

time, adapt to their beautiful surroundings, which then no longer play a part when 

asked to reflect on their wellbeing. This accords with the concept of the “hedonic 

treadmill”, the first convincing empirical evidence of which was published by 

Brickman, Coats & Jannoff-Bulman (1978), where they found that lottery winners, 

even after initially feeling very good about their winnings, after some time had 

passed did not appear to be much happier than a control group. This also accords 

with the well-known study “Does Living in California Make People Happy” by 

Schkade and Kahneman (1994), where students living in California – well known for 

its pleasant climate and beautiful beaches – did not report higher life satisfaction 

compared to their Midwest counterparts. The authors argue that when asking 

people specifically to reflect on their life satisfaction, their focus is more on the 

central aspects of their lives rather than on other general factors that might also be 

important to them, such as a great climate. Schkade and Kahneman (1994) claim 

that what is important to you simply depends on what you are focusing on at the 

time. 

This, however, does not preclude individuals from still gaining the benefits that 

scenic environments might provide for the long term. We reconfirm our initial 

findings (Seresinhe et al., 2015) with an even more robust analysis: that people who 

live in more scenic surroundings do report better health. With this newer version of 

the study, we use a fixed affects approach, controlling for an even wider range of 

factors such as household income, marital status and residence type (e.g. 

detached, terraced). We also address potential self-selection bias, and demonstrate 
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that while healthier people might be more likely to move, they do not choose to 

move primarily to more scenic locations.  

The fact that we still see people report better health in scenic locations might be 

due to the fact that more beautiful environments are encouraging people to live 

more active lifestyles by partaking in more physical outdoors activities. Physical 

inactivity costs the NHS in England more than £450 million a year (Public Health 

England, 2016). Further research investigating the link between scenic areas and 

outdoor activity could be highly valuable for policymakers. To further understand the 

relationship between people's reported health and scenic environments, it would 

also be valuable to directly study the link between scenic areas and measures of 

actual health (not just self-reported health). 

As we do indeed find a connection between scenic places and everyday 

happiness, public policy could also consider interventions in places that are likely to 

affect our everyday lives, for example considering the design of green places in 

areas in which people live or work, or interventions in areas with high volumes of 

traffic that people might pass as they commute to work. Our study exploring the 

composition of beautiful places reveals interesting insights to help inform how we 

might design spaces to increase human wellbeing: flat and uninteresting green 

spaces are not necessarily beautiful. Green spaces that contain “trees” and “valley” 

contours are more pleasing to the eye and may, in turn, be more pleasing to spend 

time in. Characterful buildings and stunning architectural features can lead to more 

city beauty, while closed-off places that offer no views, as well as wide-open places 

that are flat and offer no refuge, are places that we least prefer.  

Finally, while our primary focus has been on wellbeing, future research could 

investigate another area important to public policy: driving investment into local 

areas (Harvey & Julian, 2015). Studies that investigate the connection between 

scenicness and the economic value of a city – from house prices to commercial 

property values or even improvements in high street trading – would be highly 

valuable research to undertake, as increases in trading and changes in property 

values can have clear benefits to the local economy, such as increased income to 

local businesses and local governments. 

9.4 Discussion 

Our findings demonstrate that the availability of large crowdsourced datasets, 

coupled with recent advances in neural networks, can help us develop a deeper 

understanding of what environments we find beautiful. As we discover that beauty is 
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not simply synonymous with nature, it no longer needs to be the case that to seek 

beauty we must flee to the countryside; we might also be able to find beauty in the 

cities in which most of us live. Recent advances in neural networks will also 

inevitably bring a lot of change to our cityscapes. For example, neural networks 

have been instrumental in driving the development of autonomous vehicles, which 

are very likely to dramatically change how we design our future cities, for example 

by reducing the need for car parks and allowing the development of more efficient 

road networks. It feels well timed that this research has taken initial steps to develop 

methods to help us understand what might make our future cities more beautiful. 

We have also developed methods that allow us to infer the beauty of places at high 

resolution, which can aid policymakers in the identification of areas that might be in 

most need of infrastructure investment. 

Crucially, our findings also take an important step towards providing evidence 

that the beauty of the environments in which people visit and live, and therefore 

decisions made about their creation or preservation, might have a vital impact on 

people's everyday wellbeing. With such evidence that beautiful environments are in 

fact linked to our happiness and reported health, we argue that we can no longer 

afford to assume that scenic beauty is no more important than a mere luxury. 

Instead, our research provides evidence that suggests that beautiful environments 

may be an essential component of human wellbeing.  
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