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πρὸς ἐμαυτὸν δ᾿ οὖν ἀπιὼν ἐλογιζόμην ὅτι τούτου μὲν τοῦ ἀνθρώπου ἐγὼ σοφώτερός

εἰμι· κινδυνεύει μὲν γὰρ ἡμῶν οὐδέτερος οὐδὲν καλὸν κἀγαθὸν εἰδέναι, ἀλλ᾿ οὗτος μὲν

οἴεταί τι εἰδέναι οὐκ εἰδώς, ἐγὼ δέ, ὥσπερ οὖν οὐκ οἶδα, οὐδὲ οἴομαι· ἔοικα γοῦν τούτου

γε σμικρῷ τινι αὐτῷ τούτῳ σοφώτερος εἶναι, ὅτι ἃ μὴ οἶδα οὐδὲ οἴομαι εἰδέναι.

When I left him, I reasoned thus with myself: I am wiser than this man, for neither

of us appears to know anything great and good; but he fancies he knows something,

although he knows nothing; whereas I, as I do not know anything, so I do not fancy

I do. In this trifling particular, then, I appear to be wiser than he, because I do not

fancy I know what I do not know.

The Apology of Socrates



ABSTRACT

Being able to better understand and measure what is happening in the world is of

great importance for a range of stakeholders, including policy makers. The recent

explosion in the availability of data documenting our collective behaviour offers new

opportunities to gain insights into our society.

Here, we focus on a series of case studies to demonstrate how new forms of data

may be used to help us better understand human behaviour.

Data coming from financial transactions taking place in the stock market can help

us better understand financial crises. We analyse a dataset comprising the stocks

forming the Dow Jones Industrial Average at a second by second resolution. We in-

vestigate changes in stock market prices and how they arise at different time scales,

showing a transition between power law and exponential decay in the tails of the

distribution of logarithmic returns.

Accurate and quick estimates of the size of a crowd are crucial for the avoidance of

crowd disasters. However, existing approaches rely on human judgement and can

be slow and costly. Our findings suggest that data from mobile phone networks and

social media platforms may allow us to estimate the size of a crowd. Such data could

potentially be accessed in real time, leading to shorter delays than those experienced

viii



ix ABSTRACT

with previous approaches to crowd size estimation.

We also show how communities on a network constructed from our social inter-

actions through smartphones capture the temporal evolution of our behaviour in

everyday life.

The complex datasets presented here also require complex methodologies to anal-

yse them. Complexity science, and more specifically network science, has witnessed

increasing attention within the scientific community in the last two decades. Here,

we will present a new technique to analyse a common feature of many real world

complex networks, namely community structure. We show how our methodology

addresses many of the drawbacks of current techniques, and we also introduce an

efficient algorithm which outperforms analogous methods on a set of standard bench-

mark networks.

Our findings suggest that the analysis of large complex social datasets coupled with

methodological advances can allow us to gain valuable measurements of human be-

haviour.



CHAPTER 1

INTRODUCTION

Imagine you just woke up. You stay in bed a few moments longer, checking the

emails that your smartphone has automatically downloaded for you. You have a

quick look at your favourite social media platforms. Maybe you like a post, or

retweet a message. You get up, and scroll through some of the major newspapers

on your tablet while having breakfast. An article about your favourite comedian

catches your attention. She will be doing a show later on this week in your home

town. You consult a search engine to find out more about it. With a few clicks,

you fill in all your credit card details and buy a ticket. You leave the house in a

rush, get to the underground station and walk in, swiping your contactless card. At

lunch, you take a photo of your meal and upload it to a social media platform. You

geolocate it, so that all your friends know where they can find that food. At the end

of your long day, you do some exercise, tracking your run across the park with a

dedicated fitness app. Later on, you watch a video online and decide that it’s worth

sharing. The information travels across your social network to all your friends,

and then cascades through several social groups.

We live in a digital world. Data on our behaviour, interests, hobbies and social inter-

actions are constantly being generated. Never before have we had the opportunity

to gain such a detailed picture of our lives and collective behaviour. Smartphones,

social media platforms and the Internet have radically changed our lives in the last

two decades.

The ability to better understand human behaviour and to gain insight into our

society is vital for a range of decisions taken by governmental and commercial stake-

1



CHAPTER 1. INTRODUCTION 2

holders. State-of-the-art procedures to gather and process data to measure the state

of our world — e.g. unemployment rates or gross domestic products — are often

time consuming and costly, and can strongly rely on human judgement. Here, we

highlight that existing approaches could potentially be complemented by new forms

of data capturing a broad spectrum of human activities in a highly interconnected

world. The variety of these new forms of data ranges from information seeking and

dissemination behaviour online to mobile phone and crowdsourced data, opening

up a new window for scientists to study complex social systems. In the following

chapters, we will present a series of case studies where the wealth of data available

allows us to gain valuable insight into our behaviour and our society.

In Chapter 2, we present a detailed discussion of the variety of studies that have

exploited these new sources of data to measure the state of a range of complex

social systems. We show how data from search engines, such as Google and Ya-

hoo!, social media platforms, including Twitter and Flickr, and data derived from

our interactions with smartphones have been used to study our collective behaviour.

The ability to quantify the probability of large price changes in stock markets is

of crucial importance to understand financial crises that affect the lives of people

worldwide. Large changes in stock market prices can arise abruptly, within a matter

of minutes, or develop across much longer time scales. In Chapter 3, we analyze a

dataset comprising the stocks forming the Dow Jones Industrial Average at a sec-

ond by second resolution in the period from January 2008 to July 2010 in order

to quantify the distribution of changes in market prices at a range of time scales.

We find that the tails of the distributions of logarithmic price changes, or returns,

exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds.

For larger time scales, we find that the distributions tails exhibit exponential de-

cay. Our findings may inform the development of models of market behavior across

varying time scales.

Being able to infer the number of people in a specific area is of extreme impor-

tance for the avoidance of crowd disasters and to facilitate emergency evacuations.

In Chapter 4, using a football stadium and an airport as case studies, we present ev-

idence of a strong relationship between the number of people in restricted areas and

activity recorded by mobile phone providers and the online service Twitter. Our

findings suggest that data generated through our interactions with mobile phone

networks and the Internet may allow us to gain valuable measurements of the cur-



3

rent state of society.

Chapter 5 builds on and extends the results of the previous chapter. In partic-

ular, we show that publicly available data generated with our interactions with the

social media platform Instagram can offer accurate measurements of the size of a

crowd. We show that the number of users active on Instagram in a given place at

a specific time can be used to infer the number of people in that location. We also

present a detailed analysis that shows how changes in the behaviour, or number, of

users need to be considered. Comparing the results we obtain in two different ar-

eas, we investigate how the relationship varies across locations. Our results provide

further evidence that data derived from ordinary interactions with social media can

be used to study our collective behaviour.

The analysis of increasingly complex data sets requires complex methodologies. A

powerful tool which has gained increasing importance in the last two decades is

that of networks. Networks are ubiquitous in society. Computers are connected

together through the Internet; pages on the web have hyperlinks that allow users

to navigate from page to page; cities are connected by airports and train stations;

people are linked to each other on various levels, such as kinship, friendship, and

work relationship; scientific discoveries build on previous work, thus creating links

between scientists. Network thinking allows to develop a framework to model and

understand the properties of these systems.

In Chapter 6, we present a detailed analysis of the community structure of the

network of mobile phone calls in the metropolitan area of Milan revealing spatial

and temporal patterns of communications between people. Our findings suggest

that we can extract information about the behaviour of people from communication

records and the interactions between social circles.

Identifying communities in a complex network is a key challenge for scientists. A

common approach is to search for the network partition that maximizes a qual-

ity function. In Chapter 7, we present a detailed analysis of a recently proposed

function, namely modularity density. We show that it does not incur in the draw-

backs suffered by traditional modularity, and that it can identify networks without

ground-truth community structure, deriving its analytical dependence on link den-

sity in generic random graphs. In addition, we show that modularity density allows

an easy comparison between networks of different sizes. Finally, we introduce an
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efficient community detection algorithm based on modularity density maximization,

validating its accuracy against theoretical predictions and on a set of benchmark

networks.



CHAPTER 2

BACKGROUND

Being able to better understand human collective behaviour is of fundamental im-

portance for the shaping of a sustainable, efficient and smart society. Knowledge of

what is happening in the world right now and of the current state of our society is

crucial for a range of policy makers and stakeholders. Traditionally, obtaining such

knowledge is a lengthy, costly and slow procedure that requires a great amount of

human input and personal judgement. For instance, surveys, censuses, interviews

and opinion polls gather data on samples of the population. Statistical agencies,

researchers and private companies then analyse these data to extract estimates at a

population level.

Recent years have witnessed an explosion in the availability of large and complex

datasets encoding a vast amount of information on human behaviour in a readily

accessible format. People interact with large technological systems, such as the

Internet and mobile networks, to perform a range of actions, from information gath-

ering to building social relations. This generates a large collection of digital traces

that scientists from several disciplines can analyse to gain further insight into hu-

man behaviour and our society. Crucially, these new forms of data are, in principle,

available immediately after their generation. In line with the traditional notion of

forecasting, this has defined a new area of research called “nowcasting”, or the pur-

suit of using readily available sources of data to estimate the current state of society

before other slower datasets become available.

The sudden availability of these large complex datasets also requires rigorous method-

5
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Figure 2.1: Data Science | In recent years, large complex datasets contain-
ing detailed records of our collective behaviour have become increasingly available.
Our interactions with technological systems, such as the Internet and mobile phone
networks, generate huge volumes of data that can be analysed to help us better
understand human behaviour.

ologies and tools to analyse and interpret them. Disciplines such as physics, math-

ematics, economics, computer science and statistics can all make a contribution to

this emerging area of research, frequently referred as Data Science or Computa-

tional Social Science [1–7]. Methods from all these disciplines, and many others,

have been adapted to study social systems.

The combination of complex methodologies and the availability of large scale datasets

is at the basis of models that can be used to measure human behaviour and may

even be used to predict what is going to happen in the near future. In this Chapter,

we will present a review of key results obtained through the analysis of large social

datasets, as well as a review of some of the methodologies of interest for the rest of

our work.

2.1 Computational social science

Analysis of large social datasets has potential to help us improve our understanding

of our lives and societies. These new forms of data may come from a variety of
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sources and be of different nature (Fig. 2.1). Search engines and online services

such as Wikipedia collect a large corpus of information on what people are looking

for; this may allow us to gain further insight into our decision making processes.

Social media platforms offer further opportunities to investigate our social interac-

tions, potentially shedding light on how a disease may spread through a population

or how opinions may evolve.

We regularly check our emails, make phone calls and send messages through our

smartphones. Datasets generated from these processes encode knowledge on our

interactions and on the dynamics of our daily lives. The ubiquitous presence of

smartphones in our lives also offers opportunities to conduct large scale social ex-

periments. Compared to experiments or surveys, these studies have the potential

to include numbers of participants orders of magnitude larger than what has been

possible so far. The vast amount of personal information contained in these datasets

also poses many challenges. Researchers and stakeholders alike may have detailed

knowledge of individuals and their online behaviour. Privacy issues are an impor-

tant feature of this new area of research and need to be considered carefully.

This section reviews the main results in the analysis of data derived from such

sources, alongside some considerations of potential issues in the analysis of large

social datasets.

2.1.1 Google, Yahoo! and Wikipedia

Decision making is a cognitive process in which people have to make a choice among

many possibilities. People choose on the basis of their personal knowledge and the

information available to them. In the digital era, the information gathering process

often happens online. We use the Internet in a range of situations, including booking

our holidays, looking up the weather forecast, buying goods, or searching for a job.

We live in a connected world, where more often we collect information online. Search

engines, such as Google and Yahoo!, are the starting point of our browsing activity,

since they offer a quick method to find the most relevant websites on the topic

under consideration. Every day, we generate a large amount of information on our

interests through our search queries, and companies store these data to improve their

algorithms and target their customers more accurately. However, these datasets

also contain an enormous amount of information on the collective decision making

process of people using the Internet [8–10].
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Search query data One of the key sources of data in the emerging field of Com-

putational Social Sciences are search engines. Due to its widespread use, Google has

been the focus of several studies. Google provides access to search queries through

Google Trends1. Here, a user can access a time series index of the volume of queries

for keywords that people are typing into the search engine. Data on search queries

can be requested since 2004, and queries can be restricted to various geographical

areas. For privacy reasons, the index returned is normalised so that the highest

value is equal to 100 and datasets for keywords with a very low search volume are

not made available. Data derived from Google Trends can be used to gain insight

into several aspects of social systems.

A team of researchers from Google itself joined forces with the Center for Disease

Control and Prevention to exploit search query data to detect influenza epidemics

[11]. Traditional surveillance systems have been developed on the basis of several

sources of data, such as virological and clinical data, influenza-like illness (ILI) symp-

toms, or reports of visits to doctors. This collection process is slow, and the reports

on levels of influenza are typically reported with a lag of one to two weeks. By pro-

cessing hundreds of billions of individual searches from several years, the authors

were able to build a statistical model, called Google Flu Trends, to perform near-to-

real-time surveillance of influenza levels at different geographical scales. This study

decreases the reporting lag to as little as one day. Other studies have highlighted

the importance of information available in search query data to improve disease

surveillance [12, 13].

Policy makers and governments have a great interest in accurate estimates of the

status of the economy, the job market and several other indicators of the state of

society. In [14], the authors analyse search query data in four specific case studies

aimed at estimating various key indicators for a society, such as initial claims for

unemployment benefits, travelling statistics and consumer confidence. This work

uses autoregressive models to show that the inclusion of online data can outperform

existing models by a margin ranging from 5% to 20%. A related study addresses

the challenge of nowcasting unemployment rates in a specific group of countries in

Eastern Europe, namely the Czech Republic, Hungary, Poland and Slovakia [15].

Search query data can also offer an interesting perspective on the collective interest

in the future of a population. Previous works has found that countries with a higher

1www.google.co.uk/trends

www.google.co.uk/trends
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Figure 2.2: Future Orientation Index | Countries with a higher tendency of
searching for the future on Google show a larger GDP per capita. Figure taken from
[16].

per capita gross domestic product (GDP) report a higher interest in future years,

as opposed to previous years [16, 17]. The authors of this study construct an index

based on search data to measure to what extent Internet users in a given country

search for information about the future and show that this strongly correlates with

the country’s per capita GDP for several countries worldwide. Figure 2.2 depicts

the relationship between the so-called Future Orientation Index and the GDP per

capita.

Web search queries can also offer insight into the decision making process of in-

vestors in the financial market. Datasets on search queries on Google have been

shown to bear a relationship to stocks listed in the S&P500 index [18]. An anal-

ogous relationship has been found between data derived from the search engine

Yahoo! and stock market data for those companies listed on the NASDAQ stock

exchange [19]. The daily number of search queries for a particular stock is strongly

related to the volume of exchanges of the same stock, providing a link between

the two. Interestingly, various statistical tests enable the authors to validate the

directionality of the correlation and also the appearance of a wisdom of crowd ef-

fect: individual users typically search one stock only once rather than repeatedly,

thus suggesting that the information gathering process is led by non expert investors.

Data derived from Google Trends can also be used to implement a trading strategy

that can achieve significant returns [20]. This strategy tends to be more successful
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for financially related keywords, such as “debt”, and buys or sells hypothetically

stocks according to the dynamics of search behaviour. A related study has also

shown that the semantic nature of the keywords provides insight in stock market

movements [21]. For instance, data on searches for business or politics related key-

words can be used to successfully trade stocks in the financial market, whereas data

on music or movie related searches would achieve returns analogous to those of an

entirely random trading strategy. Google search queries exhibit power law cross

correlation properties for the Dow Jones Industrial Average (DJIA) stocks [22] and

can also be used for portfolio diversification [23].

An interesting area of research is at the intersection between online data and digital

currencies. Bitcoin2 is a digital currency and open-software payment system that

was introduced in 2009 and is the most popular of the virtual currencies introduced

so far. These currencies are of interest because they are not issued by any specific

central bank and are not related to any government. As such, their value has no par-

ticular connection with the real economy. However, some of these currencies, such

as Bitcoin, experience wild fluctuations in their value. A strong relationship can

be found between Bitcoin prices and searches for the currency both on the search

engine Google and the online encyclopedia Wikipedia [24]. Sophisticated techniques,

such as wavelet coherence analysis, have then identified correlations between var-

ious sources of price movements of Bitcoin, from online data to financial indices [25].

Our collective behaviour can often be predicted in cultural activities too. Yahoo!

query data can be used to estimate the revenues of box office feature films in their

opening weekend, as well as sales of video games or the ranking of songs [26].

Wikipedia Wikipedia is a free Internet encyclopedia where users can access and

edit the articles themselves. It is vastly popular, and is one of the most visited web-

sites. Due to its comprehensive open access summary of information, it is widely

used worldwide. Data on page views and editing history are publicly available, thus

offering an ideal source of knowledge on what people are looking for online.

The growth of the encyclopedia itself has attracted the interest of researchers [27].

Representing Wikipedia as a directed network, with topics being vertices and hy-

perlinks being edges, the authors find properties similar to those of the World

Wide Web, despite a different growth mechanism. This suggests that the growth of

2bitcoin.com

bitcoin.com
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Wikipedia can be described using local rules, such as preferential attachment [28].

Another study has focused on the hierarchical knowledge structure of the encyclo-

pedia, trying to infer it from a network of related terms on Wikipedia [29].

The number of visits to financially related pages on Wikipedia can provide early

signs of stock market moves [30], whereas views of pages in other categories, such

as pages of actors, do not offer any information on stock market movements. This

may provide evidence that data derived from Wikipedia can give an insight in the

information gathering process of agents in the financial sector.

Since data on the editing dynamic of pages are available, researchers have also fo-

cused on measuring editorial activity on Wikipedia [31]. Analysing data from pages

in 34 different languages, the authors investigate the geographical distribution of

editors worldwide. This is of interest because the spatial distribution of editors may

play a role in the biases present in certain pages, and it may explain the heterogene-

ity in topical coverage. The editorial activity seems to follow a universal circadian

pattern for all pages, with a minimum at dawn and maximum later towards the

end of the day. Interestingly, the majority of edits in English comes from Europe

rather than North America. Controversial Wikipedia pages offer a fascinating case

study on how editorial wars and social conflicts develop. An automated approach

for detecting such conflicts has been developed [32], allowing for detailed studies of

several editorial wars [33].

Wikipedia pages often provide biographies of important people across a range of

disciplines and sectors. However, it is an open question whether the coverage pro-

vided by the online encyclopedia gives an accurate image of the situation in the real

world. A first study found biases in the coverage of 400 academics on Wikipedia,

showing that there was no statistical relationship between their Wikipedia pages

and their academic performance [34].

In a similar fashion to search query data, information coming from Wikipedia can of-

fer insight into our collective reaction to a new cultural product or change. The pop-

ularity of movies, for instance, can be predicted long before their release by analysing

the activities of editors and viewers on the online encyclopedia [35]. Wikipedia data

also offer a unique opportunity to study language and its complexity [36].
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Email data Email data also contain a large amount of information on our activ-

ities and purchases. However, they are privately owned by companies that need to

ensure the confidentiality of their users. As such, studies using these data are often

performed by a team in the company itself. In [37], the authors analyse a large

Yahoo! email dataset to predict the behaviour of consumers when purchasing goods

online. A demographic analysis of users shows that the amount of money spent

grows with the age of users, peaking in the late 30s. Patterns found in these data

may help improve targeting systems for advertising companies.

Issues Online data coming from search engines and other platforms that share

large scale information can be used in a variety of situations to understand our

collective behaviour. However, large social datasets have to be exploited carefully.

Despite them capturing a large amount of information, they cannot always replace

traditional sources of data. Biases can always be present, and may be magnified

by the huge volume of information available. The demographics of Wikipedia or

Google users may not be representative of the whole population, for instance. Any

result building on these sources of data may then not necessarily apply to the en-

tire population. The sources of data themselves may also vary, both in availability

and collection. For instance, algorithms behind search engines evolve to adapt to

their users’ needs, thus changing the way the data themselves are generated. The

algorithms themselves are also privately owned, thus not allowing for transparency

in the data gathering process. It is also important to bear in mind the difference

between natural physical systems and social ones. Whereas particles or cells do not

react to mathematical models analysing them, agents, such as people purchasing

goods or investors trading stocks, respond and adapt to predictions made about

their systems. This leads to several questions on the long-term predictability of

complex social systems. An important case is that of the aforementioned Google

Flu Trends. In 2013, the predictions of influenza cases given by the algorithm were

more than double the real values. Several causes have been suggested for this, such

as change in the behaviour of Internet users due to extensive media coverage of the

2013 flu that led to users wanting to know more about this [38]. A more transpar-

ent methodology and data-sharing practice would have also been beneficial, but this

may be hard to achieve in situations where a company owns the data.

Big social datasets have to be analysed and interpreted carefully, and may not be

able to substitute traditional sources. Indeed, a recent study has shown that online

data coming from Google Flu Trends combined with more traditional data, such as
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historic flu levels, can be used to estimate levels of influenza [39]. This suggests

that online data should complement traditional data to increase the accuracy of

predictive models, rather than replacing them. Similar results have also been found

in studies using data derived from Wikipedia [40].

2.1.2 Social media data

Social interactions form the basis of our social structure. Individuals create relations

with each other leading to the emergence of the complex societal structure that we

observe as a whole. Social norms and institution are established as a consequence.

Traditionally, most interactions among individuals happen face-to-face and arise in

a range of social contexts, such as family, friendship, business relations, geographical

proximity or religious settings. Recent years have witnessed a shift in the way social

interactions take place. People can now create new relationships in the online world,

without the need of ever meeting face-to-face. Information flows through a highly

connected social structure and interactions happen at an incredibly fast rate on

social media platforms. It is probably not a surprise to know that computational

social scientists have focused their attention on these new forms of social data. They

provide an ideal setting for studying human behaviour at a large scale without having

to conduct expensive and time consuming mass surveys.

Twitter Twitter3 is among the most popular social networking websites. Regis-

tered users can send short messages, called tweets, of up to 140 characters. Users

can follow other users and share their tweets, an activity called retweeting. Twitter

immediately attracted the attention of researchers because the company makes part

of their data available through the corresponding API. As was the case for search

query data, an important research question concerns the relationship between the

flow of information on Twitter and the behaviour of the stock market. Since our

decision making process can be affected by emotions, researchers have investigated

the collective mood of Twitter feeds and its correlation with the DJIA index [41].

Calmness of the general Twitter public was found to improve the accuracy in pre-

dicting the index. Twitter data have also been used to estimate the socio-economical

status of specific geographical regions, with a particular focus on unemployment [42].

Since its onset, Twitter was used as a way to quickly share near-to-real time news. It

is thus interesting to analyse the collective behaviour of people around large events

that may trigger contrasting emotions in the population. Politics and protests, for

3twitter.com

twitter.com
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Figure 2.3: Twitter popularity of the two final contestants across the
US | Each US state is represented with an area proportional to the number of
geotagged tweets coming from that state. Each state is then coloured according to
the contestant who is more popular in that state. States coloured in gray cannot be
assigned based on Twitter activity alone. Figure taken from [49].

instance, are prime examples of this. In the period leading up to the 2010 US

congress elections, users have been shown to mostly retweet other users with a sim-

ilar political view, thus reinforcing their opinions [43]. However, users engage in

discussion with the entire network when mentioning other people in their tweets.

The overall sentiment of the population is reflected by tweets in the German federal

elections and the number of messages is a good indicator of the final outcome of the

voting process [44]. Properties similar to those of physical systems close to a critical

point have been found in the network of users involved in the Spanish anti-austerity

movement during the May 2011 demonstrations [45]. Mechanisms of recruitment for

the same protest have also been investigated and found to exhibit patterns analogous

to those of complex disease contagion [46]. The information flow around terrorist

attacks has also been studied [47], as well as the growth of communication network

around the Occupy Wall Street movement [48].

Popular cultural events are also often discussed via Twitter. Using the activity

of users on the platform, a team of researchers has analysed data related to Amer-

ican Idol, a popular TV show [49]. The results suggest that the rankings of the

contestants in the show are significantly correlated with the activity on Twitter.

This study provides evidence that social media data can be used to anticipate the

votes of millions of people. Considering only tweets geolocated in the US, where the
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voting for the show is restricted to, increases the predictive accuracy, thus show-

ing the importance of the spatial information available in the dataset. Figure 2.3

depicts the popularity on Twitter of the two finalists. The area of each US state

is proportional to the number of geotagged tweets coming from that state, and the

colour indicates the contestant with the higher proportion of tweets (Fig. taken

from [49]). Another study investigated more generally the dynamical properties of

large collective social events on Twitter [50]. The authors focused on the release of a

Hollywood blockbuster movie, protests, the discovery of the Higgs boson and other

events. They use information theory techniques, such as symbolic transfer entropy

analysis, to study how the dynamics of these systems change before, during and after

the event. The main finding is that the characteristic time scales of the information

transfer varies as you approach the event. More precisely, events which are mainly

driven by an endogenous flow of information show a decrease in the time scale long

before the onset of the actual event. Instead, events triggered by external factors

show a constant flow of information until the event has taken place (Fig. 2.4). This

study suggests that algorithms could be designed in order to analyse large collective

events using open access data.

Similar results for the discovery of the Higgs boson have also been found in [51].

Languages and their dynamics can also be studied [52]. Their use can be mapped

across the world [53] and differences in how they are used can also be analysed [54].

Language and the spatial distribution of users may affect how new social links are

established on Twitter [55]. Human mobility can also play a role in how a social

network grows, and the position of a user in the social network can also be used to

predict their location [56].

Since Twitter users are not representative of the whole population, studies have

also focused on investigating the demographic characteristics of people who tweet,

such as their age, occupation, social class, and what factors affect the decision of

sharing their location on the social media platform [57, 58]. Several other social

features of Twitter have been investigated in recent years [59–61].

Facebook Facebook4 is another widely popular online social networking website.

Registered users can set up their own profile, add other users as friends, exchange

messages with each other and more generally share information with their social

ties. Despite its high penetration rate, Facebook has been at the centre of relatively

4facebook.com

facebook.com
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Figure 2.4: Time scale of events on Twitter | The blue line depicts the char-
acteristic time scale of the flow of information on Twitter for the different events
considered. For the majority of events, the information flow gets faster as we ap-
proach the actual event, indicated with a vertical red bar, as is suggested by the
gradual decrease of the time scale. The only exception is the last panel, where the
activity is triggered by an external event, namely the media announcement of the
acquisition. In this case, the information flows at a constant rate until the event
takes place. The red lines indicate the number of tweets for reference. Figure taken
from [50].
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few studies because the company makes very little of their data publicly available.

Studies have to be performed either by the research team at Facebook or on datasets

that have been collected via Facebook apps.

A series of papers has focused on the problem of how misinformation spreads on

Facebook [62–65]. Comparing information flow on pages about either scientific news

or conspiracy theories, researchers have found find that users selectively expose

themselves to content which is in agreement with their views, thus creating so-

called echo chambers and polarised communities in the social network structure.

Other topics for which echo chambers appear are for pages related to environment,

diet, health and geopolitics.

A team of researchers from Facebook has shown that users’ choices play a signif-

icantly more important role in limiting exposure to challenging content, rather than

this being an effect of the algorithms that decide what appears on Facebook ’s News

Feed [66].

The possibility of having direct access to the social media platform from within

the company allows for large scale social experiments. A randomised controlled

trial of 61 million Facebook users has shown that messages on the social media

platform can be used to influence political self-expression, information seeking and

voting behaviour in the 2010 US congressional elections [67]. Information diffusion

on Facebook has also been studied in a large scale social experiment on 253 million

individuals [68]. Interestingly, the authors find that weak ties may play a dominant

role in how information is diffused on the social network, thus underlining their

importance. Large scale experiments can also help researchers tackle questions on

how emotions spread across a social network. A controversial study showed that

emotions expressed by other users on Facebook may influence our own emotional

status [69]. In particular, a reduction in positive posts shown to a user leads to an

increased production of negative posts by that user, and vice versa. Interestingly,

the authors show that emotional contagion can also happen online without the need

of face-to-face interactions.

The emergence of social communities in the friendship network has also been studied

[70].
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Figure 2.5: Maps of sounds in London and Barcelona | Each street segment
is assigned to a sound category based on how it is tagged on social media platforms.
Different parts of London (a) and Barcelona (b) display differences in their sound,
with natural sounds, for instance, being mostly observed in parks. Figure taken
from [71].



19 2.1. COMPUTATIONAL SOCIAL SCIENCE

Flickr Flickr5 is a photo sharing platform where users can upload, tag and com-

ment photos. Flickr has been the focus of several studies thanks to the public API

which gives free access to the entire dataset. Human mobility patterns across the

UK can be inferred by looking at the spatial and temporal trajectories of Flickr users

[72]. International movements can also be estimated and the estimates have been

found to correlate significantly with official estimates [73]. Interestingly, Flickr data

can also be used to quantify the presence of art in a city such as London. In [74],

the authors show that neighbourhoods with a higher proportion of art photographs

also exhibit a greater relative gain in property prices. Another study has shown

that the number of photos tagged with a keyword related to protest correlates with

a the number of news reports about protests in the corresponding country [75].

The large availability of geo-tagged photos and tweets has also been used to build

detailed maps of how users experience the environment around them. In partic-

ular, using photos from Flickr and Instagram6 , another photo-sharing platform,

and posts from Twitter, researchers have been able to map the smells, sounds and

emotional layers of cities [71, 76, 77]. Figure 2.5 depicts the urban sounds in two

different cities. These studies suggest that social media data may provide a funda-

mental support to policy makers in the design of smart and sustainable cities which

take into account how citizens perceive the environment they are living in.

Studies based on other social networks have explored the laws of human mobility

using data from location-based platforms [78], how communication between users

affects the growth of social networks [68], and what biases may be present in samples

of data retrieved from publicly available APIs [79].

2.1.3 Mobile phone data

Smart mobile phones have had an enormous impact on our every day lives. We

now have the opportunity to make phone calls, browse the Internet, read emails,

update our social media, all just with our fingertips. We have GPS enabled de-

vices which can give us directions on a map. We can even make transactions using

dedicated applications on the phones. Due to their high penetration rate, which in

certain countries is over 100%, smartphones can be used as sensors of most aspects

of our daily lives. This has been a great stimulus for the scientific community to

investigate our collective behaviour using the vast amount of data generated on our

5flickr.com
6instagram.com

flickr.com
instagram.com
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smartphones. A detailed survey of some of the main results in this area has been

recently published [80]. Here, we will only focus on specific key results.

Mobile phone datasets typically come in the form of Call Detail Records (CDRs).

CDRs are recorded by mobile phone providers for billing purposes and contain a

large amount of information on our communication patterns. In [81], the authors

provide a detailed description of how CDRs are constructed in a specific example.

CDRs contain our social interactions, but also spatial and temporal information.

They can address some of the shortcomings exhibited by traditional surveys. Sam-

ple size is typically not an issue and will most likely be orders of magnitude larger

than what is common in social science studies. Some of the self-reporting biases are

not likely to occur, but new ones may be introduced. For instance, it is important to

bear in mind that these data only capture a specific aspect of our social structure,

namely that expressed via mobile phones. The demographic characteristics of users

may also vary and may influence the usage patterns of smartphones.

A range of studies have focused on the geographic information stored in these

datasets in order to estimate the density of population living in different regions

worldwide [82–84]. Geographical distance has also been shown to play a role in the

probability of communications occurring. In [85], the authors analyse data from

more than two million users in Belgium and find that the probability of two users

being connected through a mobile phone communication decreases with the square

distance between them in a gravity-like fashion. An analogous relationship on the

same dataset also holds between the communication duration and distance [86].

Temporal dynamics can also provide interesting insights into our social behaviour.

The persistence of a link in a mobile phone network has been shown to follow a

bimodal distribution [87]. Most links either appear just once in the network, or

they always appear. This suggests that most phone calls either take place once or

they happen regularly between two users.

Understanding how people move is of great importance for several reasons, such as

infrastructure planning, public transport design and spreading of epidemics. Mobile

phones offer a unique opportunity to study our movements, since they can combine

both the spatial and temporal dimension of our behaviour. Interestingly, individual

mobility has been shown to follow regular patterns that exhibit a high degree of

temporal and spatial regularity [88]. Introducing a parameter that describes the
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characteristic spatial length of each individual’s trajectory, the authors show that

human mobility follow simple and reproducible patterns.

2.1.4 Crowdsourced data

Mobile phones, social media and more generally the Internet allow researchers to

perform large-scale surveys and experiments with the potential of reaching out hun-

dreds of thousands of people. This compares favourably with traditional social

science surveys and experiments which typically cover a few hundred participants

in the best scenario. Researchers can design applications for smartphones and use

them as social sensors for their particular research interests. Traditional surveys are

usually administered once or few times to each participant, making it difficult to

gain granular data on within-individual variations over time. Since we constantly

interact with our smartphones, a well designed application can track the relevant

features more regularly. Scientists can also create dedicated websites that people

can browse and interact with, and this can provide an additional source of data.

In [89], the authors use data from a crowdsourced platform where users had to

compare streets in London and rate how beautiful, quiet and happy they were.

From the ratings, they construct measures of how different routes are perceived and

then construct a recommendation system that suggest routes that are not only short

but also emotionally pleasant. Another study investigated the role of green spaces

on happiness [90]. The authors designed an application for smartphones that would

present a short questionnaire to their users at random moments during the day.

The questions were designed to measure the momentary subjective wellbeing of the

user. This study managed to collect over one million responses from its users and

the results indicate that users are happier in green spaces or other natural habitats.

A related question is that of the relationship between environmental scenicness and

our health. Using crowdsourced data from the website Scenic-Or-Not, researchers

have shown that people living in more scenic areas report better health in urban,

suburban and rural areas [91]. The relationship holds also when taking other so-

cioeconomic indicators of deprivation into account, such as income and employment.

Crowdsourced data have also been used to study human interactions in different

environments and how they can affect the transmission of diseases. The SocioPat-

terns collaboration project has performed several data collection studies on physical

proximity and face-to-face interactions of people. This has resulted in several pub-

lications investigating the patterns of human interactions and how the network of
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contacts can influence the transmission of diseases [92–105].

2.1.5 Financial data

The financial market is a complex system for which detailed records of human deci-

sions in form of financial transactions exist. The analysis of such systems has drawn

the attention of many physicists, because the accessibility of this large amount of

experimental data is a unique opportunity to study in detail the statistical proper-

ties of financial markets.

Market changes are of extreme importance since they affect the personal fortunes of

people and may also have consequences at political levels. A vast number of studies

have focused on many different aspects of financial markets, trying to unravel all

the different facets of such a complex system. A first major effort dates back to

the 1970s when Black and Scholes derived a first rational option-pricing formula.

Since then, however, many different changes have happened in the financial world:

the volume of transactions has quickly increased, the financial derivative market

has grown exponentially and electronic trading has become standard (thus allow-

ing electronic storage of data). The original proposal of Black and Scholes models

the distribution of relative price changes as a log-normal distribution, but it is now

known that this provides only a first approximation of what we actually observe in

experimental data. In particular, it was first shown by Stanley and collaborators

that distributions of returns found in empirical data are consistent with a power law

decay [106–109]. These fatter tails assign higher probabilities, compared to Gaus-

sian tails, to extreme events; therefore, the study of such datasets is of fundamental

importance since rare events in stock market transactions are high risk situations

in which investors want to avoid large losses. Many important features of financial

markets have been discovered since then and power laws have been found to describe

fluctuations in prices, trading volumes and number of trades. Interestingly, also the

distribution of U.S. firm sizes can be consistently described by a power law [110].

The appearance of phase transitions in physical systems with many interacting el-

ements leads to scaling and critical behaviour close to critical points and produce

large fluctuations resulting in power law distributions; a similar analysis has shown

that this phenomenon can be linked with the dynamics of a human system with

many interacting elements (i.e. human participants in the financial market) where

volatile market changes relate to the empirical power law distributions through the

general frame of phase transitions [111]. Another interesting feature is that many

of the scaling exponents that have been found are similar, even in the case of dif-
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ferent size of market, trends and also countries [112]. This gives insights in possible

universal phenomena that lead to these similarities.

The desire to understand market crashes, crisis and the appearance of financial

bubbles has provided another rich area of research. Evidence of speculation, for

example, has been found in the 2006-2008 oil bubble when oil prices had an incred-

ible rise followed by an extreme crash [113]. Exploiting techniques from statistical

physics to analyse the oil price time series, Sornette, Woodard and Zhou were able

to predict the peak of the bubble that immediately preceded the crash in July 2008.

Upward and downward trends are consequences of switching processes that appear

at different time scales [114]. Such switches at extreme values which form the end

of a trend have no scale and this provides evidence that large financial bubbles are

inherent features of the scale-free behaviour of the market. Therefore information

on microbubbles can be used to study the appearance of large financial crisis. The

identification of states of the market through a similarity measure has shown that

knowledge of previous states can help to forecast upcoming crises, thus allowing for

an early warning and reaction [115]. During such crises, investors rely on diver-

sification to avoid large losses. This effect should protect portfolios in high stress

situations of the market and therefore a well chosen basket of stocks should have a

smaller risk than each of the stock separately, under the assumption that correlation

among stocks are constant in time. However, it has recently been shown that the av-

erage correlation scales linearly with market stress, implying that the diversification

effect breaks down, precisely when it is most needed [116].

2.1.6 Privacy issues

As we have just shown, the availability of large-scale datasets has had a large im-

pact on several aspects of social science research. Digital technologies have rapidly

changed the way we interact, purchase goods and communicate. The generation

of high granularity data offers unprecedented opportunity for policy makers and

stakeholders alike. However, most studies presented so far rely on the availability of

the underlying datasets. Moreover, scientific research makes sharing these datasets

necessary, so that studies can be reproduced and new ideas can build on previous

analysis. This poses a serious challenge to the privacy of the individuals who are

generating this information. Has the dataset been properly anonymised before it is

shared? And how secure is this procedure? Individuals should not be identifiable

when these datasets are shared.
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Recent studies have shown that simple anonymisation procedures are highly in-

effective in ensuring the privacy of individuals. Typically, large datasets on our

collective behaviour, such as those coming from mobile phones for instance, do not

contain information on the names, addresses or phone numbers of the users. How-

ever, our digital trajectories may be more unique than we think and the removal of

those basic identifiers may not be sufficient to hide our identities. Indeed, recent

research has shown that as little as four spatio-temporal points can be enough to

identify the vast majority of mobile phone users [117]. The authors analyse sev-

eral months of human mobility data for hundreds of thousands of individuals and

show that coarsening the dataset is a poor way of anonymising it. An analogous

result holds for credit card records of more than one million individuals [118]. These

results lead to challenging questions about how our privacy can be protected in a

robust fashion while making these large-scale datasets available to researchers and

policy makers.

2.2 Complex networks

A powerful tool which has gained increasing importance in the last two decades is

that of networks [119–121, 28, 122–129]. Networks are ubiquitous in nature. Com-

puters are connected together through the Internet; web pages have hyperlinks that

allow users to navigate from page to page; cities are connected by airports and train

stations; cells, molecules and proteins all interact via biological or chemical reac-

tions; people are linked to each other on various levels, such as kinship, friendship,

and work relationship; neurons in our brain are constantly interacting with each

other to give rise to the richness of behaviour that we observe in people; scientific

discoveries build on previous work, thus creating links between scientists. Network

thinking allows to develop a framework to model and understand the properties of

these systems.

Traditionally, networks are described using the mathematical language of graphs

and graph theory. Generally speaking, a graph is a set of objects, typically called

nodes or vertices, in which some pairs of these objects may share a connection,

known as a link or an edge. Nodes can have attributes, such as colours or labels,

and links can have a direction. The relationship between two nodes can be binary

in nature, giving rise to a so called unweighted graph, or can take values in a spe-

cific set, such as the natural or the real numbers, in which case we have a weighted

graph. Edges can also be of different types, and this gives rise to more complicated
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structures.

Mathematically, a graph can be represented as an ordered pair G = (V,E), where V

is the set containing the nodes, and E is a set detailing the list of connections. The

size of V is given by the number of nodes in the graph and is usually denoted with

N . Every element of E is formed by a pair of nodes contained in V ; an element of

E establishes an adjacency relation between the corresponding nodes x and y, often

denoted x ∼ y. If the graph G is directed, then the order of the pair in each element

of E contains the information about the directionality of the relationship. It is often

the case that links between a node and itself are not of particular importance, but

such cases can be considered when of interest.

A path is a sequence of adjacent nodes. Paths on graphs allow to connect nodes that

are not adjacent, but are nevertheless connected through other nodes. The concept

of path can be used to introduce the notion of connectedness: a graph is connected

if, for every pair of nodes i and j, there exists a path from i to j. The most common

representation of a graph is in form of a matrix A, of size N ×N , whose elements

are:

aij =

1 if i ∼ j

0 otherwise

For undirected graphs, this matrix is symmetric. If links between a node and itself

are not allowed, the diagonal of A is all zero. For weighted graphs, the analogous

definition is:

aij =

wij if i ∼ j

0 otherwise

where wij is the weight of the corresponding link.

From the adjacency matrix, we can easily introduce the degree ki of node i as the

number of edges to which i is attached:

ki =
∑
j∈V

aij

The complete list of degrees of all nodes in G gives rise to the degree sequence. From

the degree sequence, we can then construct the degree distribution P (k) which is a

central feature of a graph. It is defined as the probability that a randomly chosen

node i will have degree equal to k. If the probability of a node of degree k being

connected to another node of degree k̃ is independent of k, then the network is said
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to be uncorrelated; it is correlated otherwise. The correlation can give rise to an

assortative structure, where nodes connect to other nodes of similar degrees, e.g.

high degree nodes connect with high degree nodes, or to disassortative structure,

where nodes with low degree connect with those with high degree.

In a graph, clustering refers to the presence of triangles, i.e. triplets of nodes all

pairwise connected. A related definition introduces the concept of clustering coeffi-

cient, which measures the probability that two neighbours of node i are neighbours

themselves. This is an important concept in social relations, where it simply mea-

sures the probability that two of my friends are friends themselves.

Moving to even larger structures, a community in a graph is a subset of nodes

in V that share many connections within the subset. Communities play an impor-

tant role in many applications, and we will explore this topic in more detail further

in this chapter.

Complex networks differ from graphs in that they often display non-trivial behaviour

in the topological features just presented. Networks derived from real-world data

often exhibit heterogeneous degree distributions, large clustering coefficient, assor-

tative behaviour and community structure. As such, they are rather different from

traditional random graphs or regular lattices, which display a high degree of regu-

larity.

Network science tools have already been used in hundreds of studies in a range

of disciplines. Processes taking place on networks, such as random walks [130, 92],

epidemic spreading [131–137] and rumour spreading [138, 139] have been thoroughly

investigated. The network framework has been applied to various contexts, such as

the emergence of social conventions [140], to understand political elections [141], the

properties of the Internet [142], the social structure on Facebook [143], the struc-

ture of committees in the U.S. House of Representatives [144], and the importance

of financial institutions in the network of financial exposures between them [145].

Network representations of complex systems have been used in biology [146–148],

and in studies of technological systems [28] and communication systems [149]. Re-

searchers have applied complex systems techniques to a wide range of disciplines,

identifying and analyzing several defining features of complex networks, such as

the small world property [150–152], heterogeneous degree distributions [28, 127],

clustering [153, 154], degree-degree correlations [155, 156], assortativity [157], syn-
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chronizability [158], and community structure [159].

In recent years, the wide availability of network data has given network scientists the

opportunity to study the relationship and dependencies between different networks.

In online social networks, for instance, where nodes represent people, users can be

active on different platforms. On each platform, they will have a friendship network

which may depend on what they use that specific social media for. This gives rise to

a multilayer network, where each layer represents a different social media platform.

The generalisation of this object has received extensive interest in recent years, due

to the interesting properties of processes taking place on it [160–166].

2.2.1 Communities in networks

Communities were originally studied in the context of social networks, in which

they are formed by groups of people that share close friendship relations. However,

communities of densely connected modules have been observed in several real-world

and model networks of diverse nature [167–178], where, in general, they are defined

as groups of nodes whose internal connections are denser or stronger than those

that link nodes belonging to different groups. In all these cases, the presence of

communities directly influences the behaviour of the system, where there is often a

correspondence between communities and functional units. Ever since the discovery

of community structure in real-world networks, a plethora of techniques devoted to

their detection has been introduced [179–187]. The challenge is both theoretical,

in proposing a good mathematical definition of what constitutes a community, and

computational, in developing good heuristics that can detect communities in a rea-

sonable time.

A common way of investigating the community structure of networks starts with

the definition of a quality function, which assigns a score to any network partition.

Larger scores correspond to better partitions, and algorithms are created to find the

partition with the largest score. By far, the most common and used of such quality

functions is modularity [188], that compares the number of links inside each com-

munity to the number of links that would be expected if the nodes were connected

at random, without any preference for links within or outside the community. A

partition with a large modularity indicates that the communities have many internal

links and few external ones, when compared to a randomized version of the network.
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In its most general form, modularity can be written as follows:

Q =
1

2m

∑
ij

(Aij − Pij) δ(Ci, Cj)

The sum is over all pairs of nodes, m is the overall number of links in the network,

and Pij represents the number of edges that we expect to see between node i and

node j in a suitably defined randomised version of the same network. Despite the

choice of Pij being independent, it is commonly accepted that the null model should

keep some of the topological properties of the original network. In particular, it is

usually the case that we want to keep the degree distribution fixed. In this scenario,

we need to calculate the probability pi to pick at random a stub, or half-edge,

incident on a node i of degree ki. From this, we can calculate the probability of an

edge linking node i to node j because an edge can only exist if two stubs incident

with i and j are linked together. Since there are ki stubs attached to vertex i, and

there are 2m overall stubs, the probability to pick one at random which is linked

to i is given by ki
2m . Then, the probability of having a link between the two nodes

i and j is simply calculated as the product of the two, giving
kikj
4m2 . This leads to

the expected number of links between the two vertices of Pij =
kikj
2m . Using this

expression for modularity, we obtain:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj)

This is the most common expression for modularity that can be found in several

studies. Any partition of a network will yield a score of Q, with larger scores

indicating a stronger community structure, according to the implicit definition of

communities used to define Q. The problem of identifying network communities

becomes then an optimization problem over the space of all possible partitions of

a network. An exhaustive procedure is not feasible because of the large number of

possible ways of partitioning a network when both the size and the number of the

communities are not fixed. Several techniques have been developed in the literature

for this problem, and an extensive review can be found in [181].



CHAPTER 3

QUANTIFYING STOCK RETURN DISTRIBUTIONS IN

FINANCIAL MARKETS

Complex movements in stock market prices affect the personal fortunes of people

around the globe [189–193]. An ability to more accurately quantify and predict such

changes would allow us to gain more insights into how financial crises arise [194] and

provide greater empirical basis for the development of theories of financial market

behavior [195–199, 109, 200].

A vast amount of data on financial decisions made in stock markets is available

[16, 20, 30, 21, 115]. Previous studies have shown that distributions of returns ob-

served in empirical data are consistent with power law decay [107, 108, 201, 202,

112, 203–210], in contrast with widely used models that assume Gaussian behavior

of these returns. Power law behavior has also been observed in other economical

and financial sectors of society [110, 113].

Changes in stock market prices can occur at a range of different time scales. Here, we

analyse a large dataset of stocks forming the Dow Jones Industrial Average (DJIA)

at a second-by-second resolution for a range of different time scales in order to quan-

tify the distribution of returns. We provide evidence that while the distribution of

returns exhibits power law behaviour at small time scale, exponential behaviour is

observed at larger time scales. We find analogous results when restricting our anal-

ysis to volatile trading periods. Our findings could help to gain insight into changes

in stock market prices in shorter periods and longer periods and provide further

empirical basis for the development of new models of market behaviour.

29
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Figure 3.1: Components of the DJIA. Here we depict the components of the
DJIA in the time period between 02 January 2008 to 30 July 2010. Dashed vertical
lines correspond to changes in the stocks forming the DJIA. In our analysis, we focus
on the 25 stocks that were part of the DJIA during the period of analysis. Stocks
are labelled using ticker symbols that uniquely identify the company name, as used
by the stock exchange.
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3.1 Results

The DJIA is a U.S. benchmark index that consists of 30 different stocks. For all

30 stocks, we retrieve price time series with a second by second resolution from

the Trade and Quote (TAQ) database provided by Wharton Research Data Ser-

vices (WRDS). Our dataset covers the period from 2 January 2008 to 30 July 2010

comprising a total of 647 trading days. Figure 3.1 shows the various components

of the DJIA. As five stocks were replaced during this period, we focus on the 25

components that were consistently part of the DJIA between 02 January 2008 and

30 July 2010.

We define returns as the relative logarithmic change in price of a given stock i

at a given time t:

ri(t) = log(pi(t+ ∆t))− log(pi(t)) i = 1, . . . , 25

where ∆t is the time lag between price observations. As a trading day starts at

9:30 and ends at 16:00 local time, ∆t is constrained to be at most 6 hours and 30

minutes.

We compute the standardised distribution of the returns for the 25 components of

the DJIA that we consider. We conduct separate analyses of the cumulative distri-

bution function (CDF) of the positive and negative component of the distribution

of returns.

Figure 3.2 depicts the positive CDF for American Express for ∆t = 300 seconds

and compares this to a Gaussian distribution. Note that the empirical distribution

strongly deviates from the Gaussian distribution and provides initial evidence for

power law behaviour. We perform a statistical analysis to check the consistency

of the tails of the empirical distributions with power law behaviour across different

time scales, as proposed by Clauset, Shalizi and Newman [211] and detailed in the

Methods section.

3.1.1 Methods

A power law is a distribution of the form:

p(x) =
α− 1

xmin

(
x

xmin

)−α
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Figure 3.2: Empirical distribution of normalised returns for American
Express. We build returns distributions for the 25 stocks of the DJIA for different
time lags across the full period of analysis. We standardise each distribution by
subtracting the mean return from each observation and dividing by the standard
deviation. We depict in blue the cumulative distribution function of the positive
component of the return distributions for American Express for a time lag of 300
seconds. We depict in red the positive tail of a Gaussian distribution with mean
zero and standard deviation one. We observe a strong deviation of the empirical
distribution from the Gaussian distribution. Instead, visual inspection of the dis-
tribution tail reveals consistency with a linear relationship on a log-log scale. This
provides initial evidence for possible power law behaviour at this time scale.

where α is the scaling exponent. We require α > 1 for this to be a Probability

Distribution Function (PDF). xmin is the lower bound of the power law behaviour.

We estimate the scaling exponent α using the maximum likelihood estimator (MLE).

Assuming we have n observations of xi(i = 1, . . . , n) which are independent and

identically distributed random variables, the likelihood function, which represents

the probability of observing the data given the parameter, is given by:

p(x|α) =

n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
We then maximise this probability to find the MLE estimator for the scaling expo-

nent:

α̂ = 1 + n

[
n∑
i=1

ln
xi
xmin

]
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We measure distances between distribution using the Kolmogorov-Smirnov statistic

(KS statistic):

D = maxx≥xmin |E(x)− F (x)|

where E(x) is the empirical CDF and F (x) is the best fit of the data. We determine

the lower bound xmin by choosing the value that minimizes the distance between the

empirical distribution and the fitted distribution as measured by the KS statistic.

Once we have determined the lower bound xmin and the scaling exponent α, we

then check the consistency of the hypothesis of power law behaviour in the observed

empirical distributions. We construct the empirical tails choosing a bin size such

that we have 1,000 data points in each tail. We then compare the KS statistic ob-

served for the empirical data when compared to a fitted power law distribution with

the KS statistic obtained for the synthetic data when compared to a fitted power

law distribution. We obtain a p-value by counting the number of times that the

synthetic KS statistic is larger than the empirical KS statistic. We generate 1,000

synthetic data sets and make the conservative choice of accepting our hypothesis of

consistency with power law behaviour if the p-value is larger than 0.1.

To determine whether the distribution is consistent with exponential decay, we per-

form a parallel analysis fitting the data to an exponential distribution instead of a

power law probability distribution. We then generate synthetic data from the fitted

distribution in the same manner as previously described. We evaluate whether our

data are consistent with exponential decay by comparing the empirical data to the

synthetic data using KS statistics as described above.

3.1.2 Changes in power law behaviour as ∆t increases

A power law probability distribution is a probability distribution in which the proba-

bility of an event decays as a negative power of the event. The distribution function

is characterised by a scaling exponent. Distributions of returns typically exhibit

power law decay in the tail of the distribution. Here, we want to understand how

the exact nature of power law behaviour depends on the time lag between price ob-

servations. We analyse all 25 stock price time series and use a time lag ∆t ranging

from 300 to 3,600 seconds. We investigate how the scaling exponent changes as a

function of the time lag between price observations.

Our previous work has shown how the exponent for the tails of the positive (denoted

as α+; Fig. 3.3a) and negative (denoted as α−; Fig. 3.3b) returns distributions in-



CHAPTER 3. QUANTIFYING STOCK RETURN DISTRIBUTIONS 34

creases with the time lag ∆t [212]. We have also shown that this finding holds for a

subset of the price time series in which relatively extreme price movements occur. In

particular, we have restricted the analysis to price observations recorded on trading

days on which the corresponding stock gained or lost more than 1% on a daily basis.

We refer to this as a stress level of 1%. Figures 3.3c and 3.3d depict the relationship

between the power law exponents and the time lag ∆t between price observations

on trading days on which the market experienced a stress level of at least 1%.

Here, we extend our results by performing a parallel analysis and considering a

2% stress level (Fig. 3.3e and 3.3f). We find that the mean scaling exponent in-

creases with the time lag ∆t between price observations (α+: Adjusted R2 = 0.782,

N = 12, p < 0.001, ordinary least squares regression; α−: Adjusted R2 = 0.836,

N = 12, p < 0.001, ordinary least squares regression):

α+ = 0.022(±0.003)∆t+ 3.09(±0.13)

α− = 0.017(±0.002)∆t+ 3.14(±0.08)

At a stress level of 3%, we again observe that the scaling exponent increases as we

increase the time lag ∆t (α+: Adjusted R2 = 0.573, N = 12, p < 0.05, ordinary

least squares regression; α−: Adjusted R2 = 0.458, N = 12, p < 0.05, ordinary least

squares regression):

α+ = 0.066(±0.017)∆t+ 2.04(±0.61)

α− = 0.016(±0.005)∆t+ 2.91(±0.19)

Our new results are consistent with our previous findings and provide further evi-

dence on the relationship between the scaling exponent and the time lag ∆t.

3.1.3 Evidence of exponential decay at larger values of ∆t

Our previous work highlighted how for ∆t > 60 minutes the number of tails con-

sistent with power law behaviour decreases (Fig. 3.4a). We then investigated this

change in behaviour at a range of time scales and analysed whether we started to

observe consistency with exponential decay. Exponential decay had already been

observed in daily returns of stocks from the National Stock Exchange in the Indian

stock market[213].

Figures 3.4a and 3.4b depict the number of distributions consistent with either power
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Figure 3.3: Relationship between ∆t and the scaling exponent for the
empirical tails of return distributions. (a) We investigate the relationship be-
tween the time lag between price observations used to build the returns distribution
and the scaling exponents of the tails of distributions. We consider here the tails of
the positive component of the distributions obtained when analysing all trading days
present in our dataset. We find that the mean scaling exponent increases as ∆t in-
creases (Adjusted R2 = 0.802, N = 12, p < 0.001, ordinary least squares regression)
(b) In a similar fashion, we observe that when analysing all trading days the mean
scaling exponent for the tail of the negative component of the distributions increases
with the time lag (Adjusted R2 = 0.839, N = 12, p < 0.001, ordinary least squares
regression) (c) We now restrict our analysis to trading days on which the prices of
stocks have changed by more than 1%. We find that the mean scaling exponent
of positive tails consistent with power law behaviour increases with ∆t (Adjusted
R2 = 0.856, N = 12, p < 0.001, ordinary least squares regression) (d) Under 1%
stress, an increase in the time lag ∆t results again in an increase of the mean scaling
exponent for the tails of the negative returns distributions (Adjusted R2 = 0.729,
N = 12, p < 0.001, ordinary least squares regression) (e) We now perform the same
analysis for days on which the prices of stocks have changed by more than 2%.
The mean scaling exponent for the tails of the positive component of the distribu-
tions again shows an increase with increasing ∆t (Adjusted R2 = 0.782, N = 12,
p < 0.001, ordinary least squares regression) (f) Similarly, the mean scaling expo-
nent for the tails of negative returns distributions at the 2% stress level increases as
the time lag ∆t between price observations increases (Adjusted R2 = 0.836, N = 12,
p < 0.001, ordinary least squares regression).
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Figure 3.4: Consistency of empirical returns distributions with power
law and exponential decay. (a) For ∆t > 60 minutes, we note a decrease in the
number of tails consistent with power law decay. We investigate whether the tails
of the returns distributions are consistent with power law behaviour or exponential
decay using the Kolmogorov-Smirnov statistic, as described in the methods section.
We first consider all trading days present in our dataset. At short time scales, we
observe that the tails of most empirical distributions are consistent with power law
behaviour. As we increase the time lag, the number of tails consistent with power
law behaviour decreases and we see an increase in the number of tails of returns
distributions that are consistent with exponential decay. We depict here the overall
number of tails, both for the positive and negative returns distributions, for the 25
components of the DJIA. (b) We consider transaction days on which the prices of
stocks have changed by more than 1%. We refer to this as a stress level of 1%. In
this scenario, the number of tails consistent with power law decreases more sharply.
Consistency with exponential decay appears when ∆t is roughly 2 hours. (c) In a
similar fashion, when we consider a stress level of 2%, we again observe a sharp
decrease in the number of distributions consistent with power law behaviour. We
also find an increase in the number of tails consistent with exponential decay again
when ∆t is roughly 2 hours. (d) Under a stress level of 3%, the number of empirical
distributions consistent with power law behaviour decreases more quickly than in
the other scenarios. The number of tails consistent with exponential decay peaks
at a lower number than in other scenarios, but is again highest when ∆t is roughly
two hours, similar to other scenarios.
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law behaviour or exponential decay. Using all trading days, the tail of most distri-

butions is consistent with power law behaviour at small time scales. As we increase

the time lag between price observations, we observe an increase in the number of

tails consistent with exponential decay. At the 1% stress level, the decrease in the

number of tails consistent with power law is sharper and we observe a peak in the

number of tails consistent with exponential decay when ∆t is roughly 2 hours.

As we increase the stress level, the number of tails consistent with power law be-

haviour decreases even more sharply. The number of tails consistent with exponen-

tial decay exhibits a peak at similar time scales, but peaks at a lower number than

observed at the 1% stress level (Fig. 3.4c and 3.4d).

3.2 Conclusions

Large changes in stock market prices can occur at a range of time scales, aris-

ing within minutes or developing across longer time scales. Our findings provide

evidence that in different scenarios the scaling exponent of those distributions con-

sistent with power law behaviour increases with the time lag between price observa-

tions. As this time lag increases, we observe that the number of return distributions

consistent with power law behaviour decreases sharply. At a time lag of roughly two

hours, we also find an increase in the number of distributions which are consistent

with exponential decay. Our results are consistent with the hypothesis that changes

in stock market prices have different behaviours at different time scales. We observe

that these results hold in different scenarios of the market, both when we consider

all trading days, but also when restricting our analysis to scenarios with different

stress levels. We suggest that our analysis may provide further empirical insights

for the development of models of market behaviour.
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QUANTIFYING CROWD SIZE USING MOBILE PHONE

AND TWITTER DATA

The ability to quickly and accurately estimate the size of a crowd is crucial in

facilitating emergency evacuations and avoiding crowd disasters [214]. However,

existing approaches which rely on human analysts counting samples of the crowd

can be time consuming or costly [215]. Similarly, image processing solutions require

image data to be available in which members of the crowd can be identified and

counted by an algorithm [216–218]. Here, we investigate whether data on mobile

phone usage and usage of the online social media service Twitter can be used to

estimate the number of people in a specific area at a given time. We consider data

resulting from ordinary use of smartphones, without the need for users to install

specific applications on their mobile phone.

4.1 Data

We retrieve data on mobile phone and Twitter activity recorded in the city of Milan

and surroundings in a period covering two months from 1 November 2013 to 31

December 2013. Both datasets describe activity in the geographic area depicted in

Fig. 4.1A. A detailed description of how the dataset was constructed can be found

in [81].

Twitter data We retrieved the complete set of geo-localised tweets posted in

Milan and surroundings between 1 November 2013 and 31 December 2013 from

http://www.telecomitalia.com/bigdatachallenge as part of the Big Data Chal-

38

http://www.telecomitalia.com/bigdatachallenge
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Figure 4.1: Twitter, calls and SMS, and Internet activity in Milan. (A)
We analyse Twitter, calls and SMS, and Internet activity data recorded from mobile
phones in the city of Milan and surroundings. The geographic area around Milan
for which all these datasets are available is represented in this map, created using
data from OpenStreetMap. The datasets cover the period from 1 November 2013
to 31 December 2013. We aim to determine whether such mobile phone data can
be used to infer the number of people in a specific location at a specific time. To
calibrate our model, we consider two case studies: San Siro football stadium and
Linate Airport. (B) We depict the normalised number of tweets recorded during
the first week of November 2013, for the geographic area shown in A. Tweet counts
are extracted from the full set of geolocalised tweets sent during this period. We
observe a higher density of tweets in the centre of Milan. (C) We depict normalised
data on the total number of calls made and received as well as text messages (SMS)
sent and received during the time interval between 08:20 and 08:30 of 1 November
2013, for the geographic area depicted in A. We again observe more activity in the
centre of Milan. (D) We depict normalised data on the number of requests made
by mobile phones to access the Internet during the time interval between 08:20 and
08:30 of 1 November 2013, for the geographic area shown in A. Visual inspection of
this dataset provides further evidence that more mobile phone activity is recorded
in locations where greater numbers of people would be expected. Colours in B, C
and D are normalised to the maximum recorded activity level in each dataset.
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lenge set up by Telecom Italia.

The Twitter dataset consists of all messages sent via Twitter (”tweets”), with associ-

ated geographic coordinates located within the area shown in Fig. 4.1A. Tweets are

also timestamped. Initial visual inspection of the Twitter data shows that greater

numbers of tweets are recorded in the centre of Milan, where we would expect greater

numbers of people to be found (Fig. 4.1B).

Mobile phone data The mobile phone activity dataset describes the volume of

calls made and received, SMSs sent and received and Internet connections opened,

closed and maintained. Mobile phone activity measurements are provided at ten

minute granularity, for cells in a discrete grid superimposed on the area of Mi-

lan. This grid has 10, 000 cells of size 235 m × 235 m. Visual inspection of the

distribution of call and SMS activity (Fig. 4.1C) and Internet connection activ-

ity (Fig. 4.1D) again confirms mobile phone activity is highest in the city centre

of Milan. Data on mobile phone call, SMS and Internet activity in Milan and

surroundings from 1 November 2013 until 31 December 2013 were retrieved from

http://www.telecomitalia.com/bigdatachallenge as part of the Big Data Chal-

lenge set up by Telecom Italia.

Interactions with the Telecom Italia mobile network generate Call Detail Records

(CDRs). In the dataset we consider, Telecom Italia provides data on CDRs relating

to the following activities:

• SMS: a CDR is generated for every SMS which is sent and every SMS which

is received

• Calls: every incoming and outgoing call generates a CDR

• Internet access: a CDR is generated for each of the following events:

– An Internet connection is opened

– An Internet connection is closed

– An Internet connection is open and 15 minutes has passed since the last

CDR

– An Internet connection is open and 5 MB have been transferred since the

last CDR

For privacy reasons, the values which Telecom Italia provides are rescaled using an

unknown factor. Telecom Italia specifies that counts of mobile phone call and SMS

http://www.telecomitalia.com/bigdatachallenge
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Table 4.1: Full names of football teams. The full names of the football teams
referred to in our analysis.

Abbreviation Full Name

Milan A.C. Milan
Inter F.C. Internazionale Milano
Fiorentina A.C.F. Fiorentina
Livorno A.S. Livorno Calcio
Italy Italy National Football Team
Germany Germany National Football Team
Genoa Genoa C.F.C.
Sampdoria U.C. Sampdoria
Trapani Trapani Calcio
Parma Parma F.C.
Ajax AFC Ajax
Roma A.S. Roma

CDRs are rescaled using the same factor, and are therefore comparable. Counts of

Internet activity CDRs are rescaled using a different factor.

Football match attendees We retrieved football match attendance figures from

the following websites:

• Seven of the ten games which took place during the period of analysis were

part of the Italian National Football League ‘Serie A’. We retrieved atten-

dance figures from the official website of the ‘Serie A’:www.legaseriea.it/it/

lega-calcio/regolamenti-e-documenti/dati-statistici-su-incassi-e-spettatori

• Attendance figures for the three remaining games that took place during this

period were retrieved from the following URLs of two online newspapers:

– http://www.calciomercato.com/news/inter-trapani-3-2-il-tabellino-919259

– http://www.milannews.it/il-match/quasi-cinquantamila-spettatori-riempiono-san-siro-105483

– http://www.milannews.it/il-match/milan-ajax-superati-i-61mila-spettatori-a-san-siro-130840

Airport data Flight schedule data for Linate Airport can be retrieved from

http://www.milanolinate-airport.com/it for the current date and the following

four days. In May 2014, we retrieved the flight schedule for the week between Mon-

day 5 May 2014 and Sunday 11 May 2014. We assume that weekly flight schedules

www.legaseriea.it/it/lega-calcio/regolamenti-e-documenti/dati-statistici-su-incassi-e-spettatori
www.legaseriea.it/it/lega-calcio/regolamenti-e-documenti/dati-statistici-su-incassi-e-spettatori
http://www.calciomercato.com/news/inter-trapani-3-2-il-tabellino-919259
http://www.milannews.it/il-match/quasi-cinquantamila-spettatori-riempiono-san-siro-105483
http://www.milannews.it/il-match/milan-ajax-superati-i-61mila-spettatori-a-san-siro-130840
http://www.milanolinate-airport.com/it
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Table 4.2: San Siro football match attendance figures. Attendance figures
for the football matches analysed.

Match Attendees

Milan-Fiorentina 44261
Inter-Livorno 39775
Italy-Germany 49000
Milan-Genoa 34848
Inter-Sampdoria 43607
Inter-Trapani 12714
Inter-Parma 33732
Milan-Ajax 61744
Milan-Roma 37987
Inter-Milan 79311

are reasonably constant across time, and use the schedule retrieved for this week

as a proxy for the flight schedule in the weeks between 1 November 2013 and 31

December 2013.

4.2 Results

We investigate whether the information present in these datasets can be used to

infer the number of people in specific areas of Milan at a given time. To calibrate

our model, we consider two case studies of access restricted areas for which relevant

data exist: San Siro football stadium, for which we have attendance counts for ten

football matches which took place during the period of analysis, and Linate Airport,

for which we use flight schedule data to create a proxy indicator for the number of

people present in the airport at any given time.

We examine the time series of call and SMS activity (Fig. 4.2A), Internet activity

(Fig. 4.2B) and Twitter activity (Fig. 4.2C) recorded in the vicinity of the football

stadium Stadio San Siro during the period of analysis between 1 November 2013

and 31 December 2013. The coordinates of the area for which data were analyzed is

given in Tables 4.3 and 4.4. In all three time series, we observe ten distinct spikes,

which occur at the same times across all time series. We find that the dates on which

these spikes occur coincide exactly with the dates on which the ten football matches

took place in the stadium during this period (Fig. 4.2D). Furthermore, we note that

the relative sizes of the spikes in the mobile phone and Twitter activity time series
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Figure 4.2: Mobile phone and Twitter activity in football stadium Stadio
San Siro. (A) We depict the time series of mobile phone call and SMS activity
recorded in the cell in which the football stadium Stadio San Siro is located, during
the period of analysis between 1 November 2013 and 31 December 2013. The time
series is plotted at 10 minute granularity. (B) Similarly, we depict the time series
of Internet connection activity in the cell in which Stadio San Siro is located, at 10
minute granularity.(C) Finally, we depict the daily counts of tweets recorded within
the vicinity of the stadium. (D) We determine the dates of football matches which
took place during this period, and plot the number of attendees which were recorded
at each of these matches. Visual inspection reveals a remarkable alignment between
the spikes that can be observed in the communication activities and the dates on
which football matches took place. The heights of the spikes bear a strong similarity
to the number of attendees at each match.
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Table 4.3: Coordinates of the area around San Siro for which data on
phone calls, SMS and Internet activity was retrieved. This corresponds to
one cell in the Telecom Italia dataset. Coordinates are specified using the WGS84
coordinate system. Note that the Telecom Italia cells do not appear precisely square
using this system.

Corner Latitude Longitude

Top left 45.4793078474071 9.12276821006816
Top right 45.479304576233446 9.125775032395008
Bottom right 45.477189306362206 9.125770326481447
Bottom left 45.477192577295924 9.122763616655133

Table 4.4: Coordinates of the area around San Siro for which Twitter
data was retrieved. This area constitutes a bounding box around the San Siro
stadium, including the entrance gates. Coordinates are given using the WGS84
geographic coordinate system.

Corner Latitude Longitude

Top left 45.480084 9.121097
Top right 45.480084 9.125807
Bottom right 45.476308 9.125807
Bottom left 45.476308 9.121097
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Figure 4.3: Comparing football match attendance figures to mobile phone
and Twitter activity. (A) We investigate whether there is a relationship between
the number of people attending each football match and the recorded mobile phone
call and SMS activity inside the stadium. We find a linear relationship between
these two variables (Adjusted R2 = 0.771, N = 10, p < 0.001, ordinary least squares
regression). (B) Similarly, we find a pattern consistent with a linear relationship
between Internet connection activity in the stadium and the number of attendees
at each match (Adjusted R2 = 0.937, N = 10, p < 0.001, ordinary least squares
regression). (C) We also observe a linear relationship between Twitter activity in
the stadium and the number of match attendees (Adjusted R2 = 0.855, N = 10, p <
0.001, ordinary least squares regression). (D) We explore whether this relationship
could be exploited to infer the number of attendees from communication data if no
other measurements were available. Using data on Internet activity, we build a linear
regression model using only nine out of the ten football matches and then predict the
attendance at the tenth match. We then repeat this leaving a different match out
every time. Here, we plot the resulting estimates and their 95% prediction intervals.
We find that the actual number of attendees falls within the 95% prediction interval
for all ten matches.

(Fig. 4.2A-C) bear a strong similarity to the relative sizes of the attendance counts

for these matches, as depicted in Fig. 4.2D.

We extract the maximum values of the spikes in calls and SMS activity, Internet

activity and Twitter activity. We observe a linear relationship between the number

of people attending the football matches and the volume of incoming and outgo-

ing phone calls and SMS messages (Adjusted R2 = 0.771, N = 10, p < 0.001,

ordinary least squares regression; Fig. 4.3A). We find similar relationships be-

tween the number of attendees and both Internet activity (Adjusted R2 = 0.937,

N = 10, p < 0.001, ordinary least squares regression; Fig. 4.3B) and Twitter ac-

tivity (Adjusted R2 = 0.855, N = 10, p < 0.001, ordinary least squares regression;

Fig. 4.3C). While Fig. 4.3A-C suggest a strongly linear relationship between mobile

phone activity data and the number of attendees, we note that this relationship holds

in a non-parametric analysis too (calls and SMS activity: Spearman’s ρ = 0.927,



CHAPTER 4. QUANTIFYING CROWD SIZE 46

N = 10, p < 0.001; Internet activity: Spearman’s ρ = 0.976, N = 10, p < 0.001;

Twitter activity: Spearman’s ρ = 0.924, N = 10, p < 0.001).

We investigate the possibility of using the information present in communication

data to infer the number of attendees in situations where no other measurements

are easily accessible. As an example, we consider data on Internet activity, for which

the relationship with the number of recorded attendees was strongest. We carry out

a leave-one-out cross-validation analysis as follows: for each of the ten attendance

figures, we build a linear regression model based on the remaining nine attendance

figures and the corresponding Internet activity data. We then use this model to

generate an estimate of the attendance figure which was removed from the recorded

Internet activity data. In Fig. 4.3D, we plot the resulting estimates and their 95%

prediction intervals. We find that the actual attendance figure is always within the

95% prediction interval of our estimate.

We note that our analysis of mobile phone activity data may be affected by capacity

constraints, such as signal truncation, on mobile phone communication in the sta-

dium. Should data on such constraints become available in the future, the influence

of these constraints on the relationship between communication data and crowd size

may merit further analysis.

We perform a parallel analysis of the relationship between mobile phone and Twitter

data and the number of passengers at Linate Airport. To estimate the number of

people in Linate Airport at any given hour during the analysis period, we assume

that passengers may arrive at the airport up to two hours before a departing flight,

and depart within an hour following a flight arrival. For each hour, we therefore

calculate the number of flights departing in the following two hours or arriving in

the previous hour, and use this as a proxy indicator for the number of passengers in

the airport. We base our calculations on one week of flight schedule data from May

2014, as explained in the data description above, and assume that weekly flight

schedules are relatively constant. Our proxy indicator is therefore calculated for

each of the 168 hours in a week. We omit the three initial days and two final days of

the analysis period to create a period of exactly eight weeks. We compare this proxy

indicator to the average mobile phone call and SMS activity and to the average In-

ternet activity recorded for each hour in a week, in the cells in which the airport is

located, as detailed in Table 4.5. We find that greater phone call and SMS activity

corresponds to a greater estimated number of passengers (Adjusted R2 = 0.175,

N = 168, p < 0.001, ordinary least squares regression; Fig. 4.4A). Similarly, we
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Table 4.5: Coordinates of the area around Linate Airport for which data
on phone calls, SMS and Internet activity was retrieved. This corresponds
to a square of nine cells in the Telecom Italia dataset, centered around the airport.
Coordinates are given using the WGS84 geographic coordinate system.

Corner Latitude Longitude

Top left 45.464233335498925 9.27604292987004
Top right 45.464211186534364 9.285060903904881
Bottom right 45.45786542106381 9.285028927452782
Bottom left 45.45788756515503 9.276011964969305

Table 4.6: Coordinates of the area around Linate Airport for which Twit-
ter data was retrieved. This area corresponds to the square of nine cells around
the airport, but corner coordinates are modified slightly to produce a square area
under the WGS84 coordinate system.

Corner Latitude Longitude

Top left 45.464233335498925 9.276011964969305
Top right 45.464233335498925 9.285060903904881
Bottom right 45.45786542106381 9.285060903904881
Bottom left 45.45786542106381 9.276011964969305

find that greater Internet activity relates to a higher estimated number of passen-

gers (Adjusted R2 = 0.143, N = 168, p < 0.001, ordinary least squares regression;

Fig. 4.4B). The relationships we find are weaker than those found in the previous

case study, but remarkable given the coarse nature of our estimate of the number of

passengers. We analyse Twitter activity in the area of the airport detailed in Table

4.6. In this case, we observe a stronger relationship between the estimated number

of passengers and activity on Twitter (Adjusted R2 = 0.510, N = 168, p < 0.001,

ordinary least squares regression; Fig. 4.4C). We observe that mobile phone, SMS

and Internet activity is still recorded when no flights take place, generally during

night-time periods. In contrast, few tweets are logged at these times, potentially

explaining the greater strength of this relationship.

We note that roughly 58% of the passengers travelling to and from Linate Airport

are Italian [219]. Given the current costs of using mobile phone networks abroad, the

mobile phone activity analysed here may reflect the behaviour of Italian passengers

more strongly than the behaviour of international passengers.
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Figure 4.4: Parallel analysis of the relationship between mobile phone
and Twitter data and the number of passengers at Linate Airport. (A)
We create a proxy indicator for the number of passengers at Linate Airport in each
hour by calculating the number of flights departing in the following two hours or
arriving in the previous hour. We compare this proxy indicator to the average
mobile phone call and SMS activity recorded for each hour in a week, in the cells
in which the airport is located. We find that greater activity corresponds to a
greater estimated number of passengers (Adjusted R2 = 0.175, N = 168, p < 0.001,
ordinary least squares regression). The relationship we find is weaker than that
found for the football attendance figures, but remarkable given the coarse nature
of our estimate of the number of passengers. (B) We then explore the relationship
between the proxy indicator of the number of passengers and Internet connection
activity recorded in the cells in which the airport is located. Again, we find that
greater Internet activity corresponds to a higher number of passengers (Adjusted
R2 = 0.143, N = 168, p < 0.001, ordinary least squares regression). (C) As a final
example, we consider Twitter activity recorded in the cells in which the airport is
located. Again, we consider the average number of tweets recorded during each of
the 168 hours in a week, over the 8 week period of our analysis. Here, we find
a stronger relationship between the estimated number of passengers and activity
on Twitter (Adjusted R2 = 0.510, N = 168, p < 0.001, ordinary least squares
regression).
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4.3 Conclusions

Our results provide evidence that accurate estimates of the number of people in a

given location at a given time can be extrapolated from mobile phone or Twitter

data, without requiring users to install further applications on their smartphones. As

well as being of clear practical value for a range of business and policy stakeholders,

our findings suggest that data generated through our interactions with mobile phone

networks and the Internet may allow us to gain valuable measurements of the current

state of society.



CHAPTER 5

MEASURING CROWD SIZE USING INSTAGRAM PHOTOS

In Chapter 4, we showed that activities derived from our usage of smartphones and

the social media platform Twitter can be used to infer the size of a crowd in a given

location at a given time. However, our analysis was restricted to a two months

period and only one location. Mobile phone records are owned by mobile phone

providers and, therefore, are not widely available. Here, we want to assess whether

the results described in Chapter 4 hold for datasets that are more easily accessed.

For this reason, we consider publicly available data derived from the usage of the

photo sharing platform Instagram. We aim to investigate whether analogous results

hold for this platform and we also aim to study how the relationship between social

media activity and crowd size varies in different locations.

5.1 Data

We investigate whether the activity of users on Instagram can be used to estimate

the number of people in a specific location at a given time. In order to calibrate

our model, we need a case study where we have accurate figures for the number of

people present in a specific area. As we have seen in Chapter 4, football stadiums

are access restricted areas for which attendance figures during football matches are

publicly available.

We retrieved data on photos uploaded to the social media platform Instagram in

large areas around two football stadiums in Milan and Rome between 1 January 2014

and 31 December 2014 using the publicly available Instagram API. We consider the

San Siro football stadium in Milan, and the Stadio Olimpico football stadium in

50
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Figure 5.1: Activity of Instagram users in football stadiums in Milan
and Rome | (A-B) We collected data on geolocalised photos uploaded to the photo
sharing platform Instagram in the proximity of two Italian football stadiums in Milan
and Rome. The dataset covers the period from 1 January 2014 to 31 December 2014.
We depict here the location of all of the photos uploaded to Instagram within the
vicinity of the two stadiums in the time interval ranging from one hour before the
beginning of a football match to three hours after the beginning. Visual inspection
reveals a higher activity in the proximity of the stadiums. We aim to determine
whether such activities can be used to infer the number of attendees at football
matches. We depict in red the bounding boxes that we use in the subsequent
analysis. These maps were created using map data from OpenStreetMap and tiles
from Stamen Design. (C-D) We depict the time series of unique active users on
Instagram recorded within the vicinity of the San Siro football stadium in Milan at
one hour granularity. Similarly, we present the analogous time series in the vicinity
of Stadio Olimpico football stadium in Rome. (E-F) We plot the number of officially
recorded attendees at the football matches taking place in the two stadiums. Visual
inspection suggests that peaks in the number of users within the stadiums align
perfectly with dates when a football match took place. The size of the spikes in
number of users also seems to correspond to the number of attendees. Regions
shaded in grey correspond to dates when there was no football match but other
events took place in the stadiums, such as concerts. For these, no official attendance
figures are available and the corresponding events will be discarded in the analysis.
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Rome, for which we have official attendance figures for all football matches that

took place during the period of analysis. Both stadiums are home stadiums for two

different teams: AC Milan and FC Internazionale in San Siro, and AS Roma and

SS Lazio in Stadio Olimpico. The Instagram dataset consists of all photos uploaded

to Instagram for which the geographical coordinates of the photo are available. The

photos are also timestamped. Figures 5.1A and 5.1B depict the location of photos

uploaded to Instagram within the vicinity of the two stadiums in a time window of

four hours beginning one hour before the official starting time of a football match.

Initial visual inspection shows a higher Instagram activity within the bounding boxes

defined around the two stadiums.

We also retrieve official attendance figures for all football matches taking place

during the period of analysis in the two football stadiums through official reports

available on the webpage of the major Italian sports newspaper La Gazzetta dello

Sport (www.gazzetta.it).

Table 5.1: Coordinates of the bounding box around San Siro football
stadium. Coordinates are given using the WGS84 geographic coordinate
system.

Corner Latitude Longitude

Top left 45.479350 9.121881
Top right 45.479350 9.125776
Bottom right 45.476717 9.125776
Bottom left 45.476717 9.121881

Table 5.2: Coordinates of the bounding box around Stadio Olimpico
football stadium. Coordinates are given using the WGS84 geographic
coordinate system.

Corner Latitude Longitude

Top left 41.935546 12.453480
Top right 41.935546 12.456248
Bottom right 41.932417 12.456248
Bottom left 41.932417 12.453480

www.gazzetta.it


53 5.2. RESULTS

5.2 Results

We analyse the number of users who uploaded at least one photo to Instagram in

the vicinity of the two football stadiums for the whole of 2014. The coordinates of

the two areas used to extract the Instagram data are given in tables 5.1 and 5.2.

Figures 5.1 C and 5.1 D depict the time series in the two stadiums at a granularity

of one hour. In both time series we observe distinct spikes occurring throughout

the year. Figures 5.1E and 5.1F present the number of attendees recorded at each

football match taking place in the two stadiums. We note a strong similarity be-

tween the number of users on Instagram and the number of attendees at football

matches. Regions shaded in grey represent dates when no football match took place

but Instagram activity was recorded in the two stadiums. Further investigation of

these periods shows that other events, such as concerts, took place in both stadiums

during summer. For said events, no official attendance figures are available and for

this reason they are not considered in the analysis.

We investigate the relationship between the number of active users on Instagram

and the number of attendees at the corresponding football match. We consider a

user to be active if they uploaded at least one photo on Instagram within a time

window of four hours, starting one hour before the official starting time of a football

match and within the geographical vicinity of the football stadium. The coordinates

used to define the bounding boxes around the two stadiums are given in tables 5.1

and 5.2. Our analysis shows that a larger number of active Instagram users in the

stadium corresponds to a larger number of attendees (San Siro: R2 = 0.61, N = 45,

p < 0.001; Stadio Olimpico: R2 = 0.47, N = 40, p < 0.001; ordinary least-squares

regression).

However, an analysis considering data for the whole year assumes that the num-

ber of active users on Instagram can be considered constant throughout the year.

Instagram, however, is becoming an increasingly popular social media service and

the number of registered users is constantly growing. We investigate this hypoth-

esis by dividing the period of analysis in two parts: January 2014 to May 2014,

corresponding to the last part of the 2013/2014 football season; and August 2014

to December 2014, corresponding to the first part of the 2014/2015 season. We

investigate whether there is any difference between these two periods by fitting two

separate models. Figures 5.2A and 5.2B depict the results of this analysis. We

observe that a larger number of active users on Instagram corresponds to a larger
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Figure 5.2: Comparing football matches attendance figures to active users
on Instagram | We investigate the relationship between the number of people
at football matches and the number of users uploading photos to Instagram. We
consider users that have uploaded at least one photo from within the stadium in a
time window of four hours, starting one hour before the starting time of a football
match. (A-B) In both stadiums and across seasons, an increase in number of users
corresponds to a larger number of attendees (all p < 0.001, all R2 ≥ 0.57, all
N > 19, ordinary least squares regression). We also observe that fewer Instagram
users are found for each attendee at matches during the 2013/2014 season. This
may be due to an overall increase in usage of the platform, or a change in the
behaviour of the users. (C-D) We consider the number of Instagram users active
in the football stadium normalised by the overall number of active users in a wide
area around the football stadiums, and define this as the “density” of users. We find
that a larger density of users inside the football stadiums corresponds to a linear
increase in the number of attendees (all p < 0.001, all R2 ≥ 0.47, all N > 19).
(E-F) We investigate whether this relationship can be used to infer attendees from
Instagram data alone, should no other measurements be available. We present the
mean absolute percentage error of models built using all data from a given season
(2013/2014; 2014/2015), a rolling window analysis for a given season, or a rolling
window model that uses data from the whole year. The dashed line corresponds to
the error found in a model that uses data from the whole period of analysis. We see
that the rolling window analysis performs at least as well as that model.
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Table 5.3: Coordinates of the reference area around San Siro football sta-
dium used to define the density of users inside the stadium. Coordinates
are given using the WGS84 geographic coordinate system.

Corner Latitude Longitude

Top left 45.527557 9.055555
Top right 45.527557 9.194536
Bottom right 45.427381 9.194536
Bottom left 45.427381 9.055555

Table 5.4: Coordinates of the reference area around Stadio Olimpico
football stadium used to define the density of users inside the stadium.
Coordinates are given using the WGS84 geographic coordinate system.

Corner Latitude Longitude

Top left 41.985084 12.387326
Top right 41.985084 12.521791
Bottom right 41.883495 12.521791
Bottom left 41.883495 12.387326

number of attendees in the stadium. This holds across the two stadiums and for

both football stadiums (all R2 ≥ 0.57, all N > 19, all p < 0.001; ordinary least

squares regression). However, visual inspection reveals that a larger proportion of

the attendees are active Instagram users at matches taking place in the 2014/2015

season (Fig. 5.2A and 5.2B), as can also be seen by the differences in the slopes

of the fitted lines. This suggests that considering the number of users, or their be-

haviour, to be constant across the whole year may be inaccurate and that a more

rigorous analysis should consider these variations.

If the number of users is increasing, this should also hold for areas other than

the football stadium. This suggests that we could take this increase into account by

considering the number of users that are inside the stadium divided by the number

of users who are active in the same time window in an area used for reference.

We test this hypothesis by defining the density of users during a football match

as the number of active users active inside the bounding box divided by the number

of active users in a much larger area around the stadium. Specific coordinates for

the reference areas in Milan and Rome are given in tables 5.3 and 5.4. As depicted
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Table 5.5: We analyse the relationship between the density of users on
Instagram active in the stadium and the number of attendees at football
matches. We perform the analysis for two time periods to investigate
whether the relationship between these quantities changes over the pe-
riod of one year. We report here the 95% confidence interval for the
estimated slopes of the regression models. We find that the slopes are
consistent across seasons.

Stadium Season 95% confidence interval for estimated slope

Milan 2013/2014 [110,883; 169,209]
Milan 2014/2015 [108,003; 159,217]
Rome 2013/2014 [168,201; 276,647]
Rome 2014/2015 [140,319; 218,019]

in Fig. 5.2C and 5.2D, we again find that a larger number of attendees corresponds

to a larger density of users (all R ≥ 0.47, all N > 19, all p < 0.001; ordinary least

squares regression). However, it is important to note that the parameters of the

fitted models now change very little across seasons (table 5.5). Since the density

of users takes does not change if the overall number of Instagram users varies, this

supports our initial hypothesis that the number of users on Instagram is increasing

over time.

5.2.1 Selecting an appropriate spatial area for analysis

Our analysis so far has considered a bounding box of fixed size around the football

stadiums. However, at this stage it is not clear how this choice may affect the results

and whether different considerations hold for different locations. If we consider a

larger area, we may be able to capture more users that have been active within

the proximity of the football stadium, but we may also introduce additional noise

coming from users that are not attending the football match. Similarly, a smaller

area would reduce the noise and only consider the users who are inside the stadium,

but may not capture all the relevant information. We investigate how the strength

of the relationship changes as we vary the size of the area considered to count users

on Instagram. For each stadium, we define a circle of a given radius centred on

the stadium, as depicted in Fig. 5.3A and 5.3B. Tables 5.6 and 5.7 report the

coordinates used for the centre of the two stadiums. We then carry out the same

analysis as before, counting the number of active users during football matches and

comparing it to the number of attendees. For this analysis, we do not separate by

season but we consider the entire period of analysis together. We vary the size of
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Table 5.6: Coordinates of the centre of San Siro football stadium. Coor-
dinates are given using the WGS84 geographic coordinate system.

Latitude Longitude

45.478100 9.124000

Table 5.7: Coordinates of the centre of Stadio Olimpico football stadium.
Coordinates are given using the WGS84 geographic coordinate system.

Latitude Longitude

41.934077 12.454730

the radius from 10 metres to 5 kilometres. Figure 5.3 depicts the results of this

analysis in the two stadiums. In Milan, the correlation (Fig. 5.3C) shows a smooth

and slow decrease with the increasing radius. In Rome, the correlation exhibits a

less smooth and faster change with the radius (Fig. 5.3D). This difference may arise

from the different location in the corresponding cities of the two stadiums, with that

in Rome being closer to areas with high density of tourists. Figure 5.4 depicts the

spatial distribution of photos in a wide area centred on the two stadiums. Visual

inspection provides a preliminary understanding of this difference. While in Milan

we observe a rather homogeneous distribution of photos, with the football stadium

being the only area with a large density of photos, in Rome we find several other

locations with a large density. In particular, these locations correspond to important

touristic sites in the city. This indicates that the choice of the bounding box should

be carefully assessed by analysing the spatial location of the area when trying to

infer crowd sizes from social media measures alone.

5.2.2 Training models using only historic data

In our previous analysis we have considered models fitted using all available data,

either for the whole year or for a football season. In reality, however, we would only

have access to data from matches that have already taken place. Here, we investi-

gate whether we can using data from the last ten football matches infer the number

of attendees at the following match. We call this a rolling window analysis. For a

given stadium and season, we fit a model using data from the last ten matches, and

then predict the number of attendees at the following one based on the number of

active Instagram users.
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Figure 5.3: Investigating the role of the bounding box | (A-B) We investigate
how the strength of the relationship varies as we change the size of the bounding
box around the football stadiums. We consider concentric circles centred on the
football stadiums and of increasing radius. For each radius, we consider users that
have uploaded at least one photos to Instagram inside the corresponding circle and
investigate the relationship between the number of users and the number of attendees
at football matches. We examine radii varying from 10 metres to 5 kilometres in
steps of 10 metres, and we only show results when the relationship is statistically
significant (p < 0.05, ordinary least-squares regression). As before, the time window
used to count users goes from one hour before the beginning of the football match,
to three hours after the beginning. (C-D) We depict here how the coefficient of
determination R2 varies when we increase the size of the circle around the two
football stadiums. In the two insets, we present a map of how the correlation
changes in the proximity of the two stadiums. We observe some differences in the
two case studies: whereas in Milan the correlation decreases smoothly as we consider
larger areas, in Rome we find a more fragmented change. This may be due to the
different location of the two stadiums inside the city, with Rome’s stadium being
close to tourist attractions from where Instagram users commonly upload photos.
This analysis shows the importance of carefully assessing the location of the area in
which the crowd is when calibrating the model.
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Figure 5.4: Spatial distribution of photos posted on Instagram during
football matches | We present here the spatial distribution of the photos posted
on Instagram in a wide area around the football stadiums. Similarly to before, we
consider photos uploaded in a time window extending from one hour before to three
hours after the official starting time of the football matches. In Milan, we observe
a distribution which is mostly concentrated around San Siro football stadium and
is mostly homogeneous around it, with no other areas showing a large density of
photos. In Rome, we find that the distribution around Stadio Olimpico football
stadium is more fragmented and peaked around hotspots showing large densities of
photos. Visual inspection shows that they correspond to several tourist attractions
in Rome. Both maps were created using map data from OpenStreetMap and tiles
from Stamen Design.
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We measure the predictive accuracy using the symmetric mean absolute percent-

age error (SMAPE). We first define the mean absolute percentage error (MAPE)

for the predicted values ŷi of a regression model with dependent variable yi for n

predictions:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣
However, the MAPE is not an ideal measure of predictive accuracy because it puts

a heavier weight on negative errors. For this reason, it is often more useful to

introduce its symmetric version, defined as:

SMAPE =
1

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

We perform the rolling window analysis using data for the whole period of analysis,

and we obtain a SMAPE of 17.5% in Milan and of 17% in Rome. If we carry out

the rolling window analysis for each season separately, in Milan we obtain SMAPEs

of 13.3% and 19.3% for the first and second season respectively, and of 15.7% and

12.6% in Rome, as is also depicted in Fig. 5.2E and 5.2F.

We want to compare this to models which using all available data in order to as-

sess whether using only ten matches to calibrate the model significantly changes

the predictive accuracy. To generate a comparable measure of predictive accuracy

for models calibrated using all available data, we carry out a leave-one-out-cross-

validation analysis as follows. First, we build a linear regression model leaving out

one of the matches and considering all others. Then, we use this model to estimate

the attendance figure at the match which was left out. We repeat this as many

times as there are matches, so that each match is considered exactly once.

We find that models trained in this fashion, using all available match attendance

data, exhibit a SMAPE of 20.5% in Milan and of 15.6% in Rome. We perform the

analysis for each season separately, in Milan we obtain SMAPEs of 17.9% and 16.5%

for the first and second season respectively, whereas in Rome we find errors of 12.5%

and 12.9% (Fig. 5.2E and 5.2F). Comparing the results depicted in Fig. 5.2E and

5.2F, we observe that the prediction accuracies of the rolling window models are as

good as those of models built using all data from the same football seasons. This is

encouraging, since in reality we would not have access to data coming from matches

that have not yet taken place.
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Qualitatively similar results also hold if we consider the number of photos uploaded

on Instagram instead of the number of active users. The use of the aggregated count

of photos may be preferred in situations where privacy considerations would speak

against counting individual Instagram users. More details on this can be found in

Section 5.2.4.

Further measures of predictive accuracy

Above, we presented one measure of predictive accuracy: the symmetric mean ab-

solute percentage error (SMAPE). Other common measures of predictive accuracy

are the root mean squared error (RMSE):

RMSE =

√∑n
i=1 (ŷi − yi)2

n

and the median absolute error (MAE):

MAE = median (|ŷi − yi|)

Figures 5.5 and 5.6 depict the RMSE and MAE for the analysis presented in Sec-

tion 5.2. Comparing the results obtained with the RMSE (Fig. 5.5) in the different

analyses, we again find that most prediction accuracies of the rolling window models

are as good as those of models built using data from the whole period of analysis.

Similarly, Fig. 5.6 depicts the results we find when using the MAE as measure of pre-

dictive accuracy. Results obtained with the rolling window analysis are comparable

to those of other models.

5.2.3 Selecting an appropriate time windows for analysis

Our findings also depend on the time window used to count users who have been

active on Instagram during a football match. A longer time window may capture

users who are active before or after the match, but may also capture users who are in

the proximity of the stadium for other reasons thus introducing additional noise. So

far, we have counted users who were active at least once in a window of four hours

starting one hour before the match. We now consider time windows of varying

lengths, which start at different times. We pick a starting time and a length, count

the number of users who are active on Instagramn in that time interval, and then

compare it to the number of attendees recorded at the match. Figure 5.7 depicts
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Figure 5.5: Root mean squared error in the two stadiums| We investigate
whether the relationship between Instagram users counts and number of attendees
can be used to infer the number of people attending a football match. We per-
form leave-one-out-cross-validation on models using all data from a given season
(2013/2014; 2014/2015), a rolling window analysis for a given season, or a rolling
window model that uses data from the whole year. Here, we present the root mean
squared error of the various models considered. The dashed line corresponds to the
error found in a model that uses data from the whole period of analysis. We see
that the rolling window analysis performs at least as well as that model, with the
exception of the rolling window analysis using data from both seasons in Rome.
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Figure 5.6: Median absolute error in the two stadiums| We investigate
whether the relationship between Instagram users counts and number of attendees
can be used to infer the number of people attending a football match. We per-
form leave-one-out-cross-validation on models using all data from a given season
(2013/2014; 2014/2015), a rolling window analysis for a given season, or a rolling
window model that uses data from the whole year. Here, we present the median
absolute error of the various models considered. The dashed line corresponds to the
error found in a model that uses data from the whole period of analysis. We see
that the rolling window analysis performs at least as well as that model.



CHAPTER 5. MEASURING CROWD SIZE USING INSTAGRAM PHOTOS 64

the results of this analysis. For each time window, we show its length and starting

time, and the colour corresponds to the squared correlation between users’ count and

number of attendees. In Milan we find that the strength of the relationship increases

when taking into account the entire match, whereas in Rome we observe that the

time before the start of the match increases the strength of the relationship. Figure

5.8 depicts the same analysis at a higher temporal resolution. As before, we observe

that in Milan the strength of the relationship increases when counting Instagram

users active during the entire match. However, we also note that counting users who

are active up to two hours before the match results in a stronger relationship with

the number of attendees. In Rome, we again find that counting Instagram users

active before the start of the match increases the strength of the relationship with

the number of attendees in the stadium.
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Figure 5.7: Investigating the effect of the time window | We want to in-
vestigate how the relationship changes as we change the size of the time window
used to count users active on Instagram during a football match. In the figure, the
bars extend from the starting point of the time window until the ending point. For
instance, the top bar extends for 30 minutes starting at the beginning time of the
match. The corresponding analysis counts all unique users who have been active
on Instagram in that interval and compares it to the official number of attendees
for that match. The colour of the bar indicates the squared correlation between
the users’ count and the number of attendees in the stadium. For this analysis, we
consider a football match to be 105 minutes long, including a 15 minutes half-time
break. In Milan the strength of the relationship increases if we consider Instagram
users active during the entire match. In Rome, we find that counting Instagram
users active before the start of the match results in a stronger relationship with the
number of attendees in the stadium.
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Figure 5.8: High temporal resolution analysis of the effect of the size and
starting point of the time window.|We want to investigate how the relationship
changes as we change the size of the time window used to count users active on
Instagram during a football match. In the figure, the bars extend from the starting
point of the time window until the ending point. The corresponding analysis counts
all unique users who have been active on Instagram in that interval and compares it
to the official number of attendees for that match. The colour of the bar indicates
the squared correlation between the users’ count and the number of attendees in the
stadium. For this analysis, we consider a football match to be 105 minutes long,
including a 15 minutes half-time break.In Milan, the strength of the relationship
increases both when counting Instagram users active during the entire match, but
also when considering users who are active up to two hours before the match. In
Rome, our results suggest that taking into account Instagram users active before
the start of the match increases the strength of the relationship with the number of
attendees in the stadium.
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Figure 5.9: Comparing football matches attendance figures to number of
photos posted on Instagram | We investigate the relationship between number
of people attending football matches and number of photos uploaded on Instagram.
We consider photos uploaded in two football stadiums in a time window extending
from one hour before the official starting time of a football match, to three hours
after. In both stadiums and across seasons, we find that higher counts of Instagram
users correspond to higher numbers of attendees (all p < 0.001, all R2 ≥ 0.55,
ordinary least squares regression).

5.2.4 Counting photos instead of users

We present here a parallel analysis to that presented above to show that we obtain

qualitatively similar results if we use the number of photos posted on Instagram

rather than the unique number of active users in the two stadiums. This may be

of interest when privacy considerations suggest that aggregated information on the

number of photos might be preferable to data on individual users. Figure 5.9 depicts

the relationship between number of photos uploaded to Instagram and number of

attendees in the stadium. Figures 5.10, 5.11 and 5.12 present a comparison between

the predictive accuracies of a rolling window model fitted to the data and models

built using all available data. As before, we find that in almost all cases the rolling

window models perform as well as models built using data from the whole period

of analysis. This further supports the use of a rolling window model, since it is

only fitted to data which would actually be available in reality. Finally, Fig. 5.13

shows the effect of the size of the bounding box on the strength of the relationship.

Similarly to before, we observe a smooth decrease around San Siro football stadium,

whereas a faster decrease is observed around Stadio Olimpico football stadium.
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Figure 5.10: Predictive accuracy in the two stadiums when using number
of photos for the analysis |We present here the results of the leave-one-out-cross-
validation analysis on models fitted using the number of photos inside the football
stadiums. For the same measures of prediction accuracy, we again see that in most
cases the rolling window analysis performs at least as well as the model considering
data from the whole period of analysis. This suggests that even the aggregated
number of photos posted inside the stadiums, without considering whether a user
has uploaded more than one photo during a match, contains sufficient information to
infer the number of attendees. This figure reports the symmetric mean percentage
absolute error (SMAPE).
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Figure 5.11: Root mean squared error in the two stadiums when using
number of photos uploaded to Instagram as the predictor variable.
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Figure 5.12: Median absolute error in the two stadiums when using num-
ber of photos uploaded to Instagram as the predictor variable.
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Figure 5.13: Spatial analysis | We investigate how the relationship between
number of photos uploaded to Instagram and number of attendees varies as we
change the size of the bounding box around the football stadiums. We consider
concentric circles centred on the football stadiums and of increasing radius. For
each radius, we consider photos uploaded on Instagram inside the corresponding
circle and investigate the relationship between them and the attendees at football
matches. We examine radii varying from 10 metres to 5 kilometres, and we only
show results when the relationship is statistically significant (p < 0.05, ordinary
least squares regression). The time window used to count photos stretches from one
hour before the starting time of the football match, to three hours after the starting
time. As before, we again observe some differences in the two stadiums: in Milan
the correlation decreases smoothly as we consider larger areas; however, in Rome
we find a more fragmented change. This may be due to the different location of the
two stadiums inside the city, with Rome’s stadium being close to tourist attractions
from where Instagram users commonly upload photos. This further analysis again
highlights the importance of carefully assessing the location of the area in which the
crowd is when calibrating the model.
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5.3 Conclusion

Being able to measure the size of a crowd can be crucial in emergency situations.

However, this is a traditionally difficult task which is often performed manually,

with human analysts counting samples of the crowd. In Chapters 4 and 5, we have

presented evidence that data generated through our ordinary interactions with mo-

bile phone networks and social media platforms, such as Twitter and Instagram,

can be used to measure the size of a crowd. Our work highlights the importance

of calibrating and testing methods to estimate crowd size on specific case studies

where precise counts are available from other sources.

We have shown that there are several aspects to consider when analysing data

derived from social media platforms to measure the size of a crowd. Changes in the

number of active users of the service may affect the relationship and we have seen

that they can be taken into account by considering temporally close data points.

The location of the event where the crowd is gathered is also an important factor,

and the area used to collect social media data should be carefully assessed.

Our findings hold potential value for a range of stakeholders and policy makers,

who may need to generate quick and accurate estimates of the size of a crowd for a

wide range of reasons, including the avoidance of crowd disasters and to facilitate

emergency evacuations.



CHAPTER 6

ANALYSIS OF THE COMMUNITIES OF AN URBAN

MOBILE PHONE NETWORK

In Chapter 4, we showed that aggregated data derived from our interactions with

the mobile phone network, such as phone calls, can be used to estimate the size

of a crowd. However, data derived from phone calls also contain information on

interactions between social groups or geographical locations. Here, we analyse the

community structure of the network induced by mobile phone calls placed and re-

ceived within the Milan metropolitan area, in northern Italy, over a period of two

months, revealing the spatial and temporal patterns in the local communications.

The dataset we retrieved for this study contains the anonymized records of phone

calls between geographical areas in the city of Milan and surroundings, as presented

in the left panel of Fig. 6.1. In a similar fashion to the dataset presented in Chapter

4, the mobile phone provider aggregated the data both spatially into a grid with

10000 cells, each cell being roughly square of side 235m, and also temporally at a

ten minute granularity 1. The period of analysis goes from 1 November 2013 to

31 December 2013. A more detailed description of how the dataset was constructed

is presented in [81]. We study the cell activity by constructing a series of weighted

networks. The nodes in these networks represent geographical locations, and the

link strength is proportional to the volume of calls between the corresponding cells.

For a preliminary characterization of the networks structure, we build a single net-

1Data available at: Telecom Italia Big Data Challenge 2014,
https://dandelion.eu/datamine/open-big-data/

72
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work aggregating all time intervals. As the whole period of analysis consists of

8784 time intervals, the edge weights are defined as:

ωij =
1

Z

(
8784∑
t=1

w̄ij +
8784∑
t=1

w̄ji

)
.

In the equation above, w̄ij is the volume of calls originating on node i and reaching

node j. Thus, the edge weight ωij is the normalized volume of phone calls between

nodes i and j. The normalization constant Z = max
i,j

{∑8784
t=1 w̄ij +

∑8784
t=1 w̄ji

}
is

chosen so that the strongest edge weight is 1. With these definitions, we assing to

each node i an activity k, defined as:

ki =

10,000∑
j=1

ωij .

The activity is a weighted equivalent of the node degree, measuring the total strength

of all the connections involving a given node. A geographical heat map of the

activities, in the right panel of Fig. 6.1, shows that a higher call volume is recorded

in downtown Milan, in agreement with our findings of Chapter 4 and with the

intuitive notion that the centre is the busiest part of the territory. The study of

0.0256

1

6.5536

Figure 6.1: Radially decreasing mobile phone activity. The activities of
the cells (heat map on the right) are highest in downtown Milan, and roughly
decrease with distance from the city centre. Notable exceptions are the airport
and residential suburbs. This map was generated with data from OpenStreetMap
( c© OpenStreetMap contributors).

the community structure could be performed, in principle, on the full aggregate

network. However, this would have two drawbacks. First, it would not allow us to

detect the hierarchy of the communities. Second, the analysis could be sensitive to

the presence of noise, i.e., very weak links that may mask the underlying structural
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character of the network. This is a particularly likely occurrence, given the slow-

tail decay in the distributions of weights and activities (Fig. 6.2), which makes

the weakest edge strength and the lowest node activity the most probable. More

precisely, the distribution of weights exhibits a power-law tail with exponent −2.59,

while the activity distribution follows a clear stretched exponential

P (k) ∼ e−( k
k∗ )

α

, (6.1)

with k∗ = 0.023 and α = 0.383. Thus, we prefer to threshold the aggreate intro-

ducing a parameter τ : for any chosen value of τ , we create a network by removing

from the aggregate any edge whose weight is less than τ , and considering all other

edges as unweighted. To analyze the networks thus created, we test the recently in-
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Figure 6.2: Weights and activities of the aggregate network. The distribu-
tion of the edge weights in the aggregate (left panel) shows a slow decay, with a tail
that is well fitted by a power-law with exponent −2.59. The activities (right panel)
follow instead a stretched exponential (Eq. 6.1), with k∗ = 0.023 and α = 0.383.

troduced community detection algorithm described in Ref. [186]. This is a new fast

spectral method that uses several refinement steps to identify the network partition

that maximizes the modularity

q =
1

2m

∑
ij

(
Aij −

didj
2m

)
δci,cj .

In the equation above, the sum runs over all pairs of nodes, m is the total number of

edges in the network, di is the degree of node i, ci is the community to which node

i is assigned, δ is Kronecker’s symbol, and A is the adjacency matrix, whose (i, j)

element is 1 if there is an edge between nodes i and j, and 0 otherwise. The values

of modularity are constrained between −1 and 1, with higher values corresponding

to better partitions. The algorithm also provides the effect size of the detected

partition in terms of a z-score, which is the number of standard deviations that

separate the measured modularity from that of a random-graph null model. We
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run the algorithm 100 times on each thresholded network, and select the partition

with the highest value of modularity. As the values of τ increase, we note that the

Figure 6.3: Hierarchical backbone of communication communities. For
low values of the threshold τ the noise still dominates the community structure
detected. However, after the critical threshold of 0.005, increasing τ only causes the
communities to fragment into sub-modules.

evolution of the detected community structure undergoes a significant change when

τ reaches a “critical value” τ∗ ≈ 0.005. At lower thresholds, the communities change

significantly with τ . Conversely, thresholds greater than τ∗ only result in fragmenta-

tion of the existing communities into smaller ones almost entirely contained within

the parent module, without drastic changes in the overall structure. In addition,

the individual communities correspond to connected areas of territory (Fig. 6.3).

A second effect we note is that increasing thresholds correspond at the same time

to higher values of the modularity, and lower z-scores (Fig. 6.4). Explaining this

behaviour in detail is a complex problem, since, to a preliminary investigation, it

appears to depend on the distribution of weights between modules, and it will be

addressed in future publications. For the analysis of our data, we choose to work on

the network corresponding to the critical threshold, as this provides a good balance

between two necessities, namely that of a large enough threshold to remove the noise

that might mask the community structure, and that of a small enough threshold to

avoid excessive fragmentation. Even though this choice is arbitrary, our results are

robust with respect to small threshold variations. Also, we show below that analo-

gous results hold for weighted networks where we keep all weights unchanged. Thus,

to take advantage of faster computational times, we use the unweighted network for

further analysis.
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Figure 6.4: Threshold evolution of network modularity. For increasing
values of the threshold, the modularity increases (panel A), apparently saturating
at a value just above 0.8. For the same thresholds, the z-score, which is a measure
of the effect size of a given modularity measurement, has a fast decay, indicating
that the community structure quickly becomes similar to what would be found in a
random network as more links are erased. The lines are guides for the eye.

6.1 Time evolution of communities

Our first goal is to to investigate the communication patterns that appear over

time at a community level, to gain insights in the emergent structures of human

communication. We start by studying how the communities evolve on the time scale

of single days. To do so, we create an aggregate network for each day over the period

covered by our data, and perform community detection on each of them as described

above, with the aim of quantifying the difference between the community structures

in the different “daily” networks. One of the most widely used methods for the

actual comparison and evaluation of such differences is to calculate the Normalised

Mutual Information (NMI), a measure borrowed from information theory [220, 221,

179, 222, 180, 181, 183]. To find the NMI between two partitions C and C̃, first

treat them as random variables and compute their mutual information:

I(C, C̃) =

nC∑
i=1

nC̃∑
j=1

Vij
N

log

(
VijN

ViVj

)
,

where the Vij are the elements of the confusion matrix V , whose entries are the

numbers of nodes belonging to community i in partition C and to community j in

partition C̃, Vi denotes the sum over the elements of row i in V , and N is the total
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Figure 6.5: Determining the time-scale of social dynamics. Panel A depicts
the Normalised Mutual Information between partitions at different days, showing a
strong similarity between all communities during the two months analyzed. Panel B
presents the evolution of modularity during the period of analysis. Vertical dashed
lines correspond the the beginning of the working week (Monday). The modularity
has an unusual spike in the first days of November, probably due to a bank holiday
long weekend, but only oscillates around a constant value for subsequent periods.
We note that the modularity on weekends is consistently higher than it was dur-
ing the working days of the corresponding week. The NMI analysis of partitions
corresponding to different weeks, in Panel C, shows a strong similarity between all
communities. Panel D illustrates the evolution of modularity of the weekly networks,
with labels indicating the first day of each week. In agreement with the previous
analysis, the modularity has a higher value in the first week of November.

number of nodes. Then the NMI between two partitions is defined as

NMI(C, C̃) =
−2I(C, C̃)∑nC

i=1
Vi
N log Vi

N +
∑nC̃

j=1
Vj
N log

Vj
N

=
−2
∑nC

i=1

∑nC̃
j=1 Vij log

(
VijN
ViVj

)
∑nC

i=1 Vi log Vi
N +

∑nC̃
j=1 Vj log

Vj
N

.

The normalised mutual information can assume values ranging from 0 to 1. Higher

values indicate stronger similarity between the two partitions, with NMI(C, C̃) = 1

found if the two partitions are identical. Conversely, partitions that are totally in-

dependent from each other have a normalised mutual information of 0.
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The NMI values we find are always quite high (Fig. 6.5A), indicating a strong

similarity in the community structure across different days. This provides evidence

of the robustness of the structure of the mobile phone call network over the 24-hour

time scale, with only minor changes between communities across the two months.

Nonetheless, some days stand out as significantly different from the average. First,

we observe an unusual structure in the first few days of November. This is most

probably due to the particular nature of that period, which includes a bank holi-

day covering an important mandated Catholic holiday (1 November). In addition,

in 2013, the holiday fell on a Friday, causing a “long weekend”. We also note that

the community structure in these days had a substantially higher modularity than

the average for the rest of the period (Fig. 6.5B).

Another remarkable difference in the structure appears on 12 December. This is

likely caused by the combination of three major events happening in Milan on that

day: 1) an annual demonstration in memory of the controversial Piazza Fontana

Bombing, a terrorist attack that took place on 12 December 1969; 2) a second

demonstration, part of ongoing protests against the Italian government; and 3) a

major concert of One Direction, a highly popular pop boy band. Notably, both

political demonstrations saw the occurrence of clashes between demonstrators and

police forces, while the concert gathered thousands of people across the city for the

whole day. The co-occurrence of these events clearly disrupted the usual patterns

of communications in the city, causing the highly unusual community structure ob-

served on that day. Finally, the changes in structure detected on 22 December

and 24 December likely reflect the particular nature of this period of the year. In

particular, 22 December was the last Sunday before Christmas, a day traditionally

devoted to the final purchases before the start of the holiday period. Notice that

these results provide direct evidence of how one can use mobile phone activity to

extract information on people’s behaviour within social groups and directly detect

socially relevant changes in their patterns.

The data also allow us to infer a strong similarity in the last week of our analy-

sis period, which corresponds to Christmas and New Year’s holidays. This supports

the idea that communities in the communication networks closely reflect our be-

haviour. In the holiday period, people traditionally spend more time with their

families, and reduce the frequency of contacts with acquaintances and other people

outside their close-friend circles. Thus, the structure of communications is better
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defined, and links between different communities become less important, causing an

increase in modularity. Also, this is an indication that the agents participating in

communication tend to remain stable over this time period.

The analysis of the daily NMI also shows that days close to each other have a

consistently higher similarity, suggesting that changes in the community structure

happen over a longer time scale than just one day. To investigate this, we build

aggregates for each entire week in the period of analysis and perform community

detection as above. Our findings (Fig. 6.5) show that weeks close to each other are

very similar, and the NMI exhibits a slower decay than what we observed in the

daily structure. This suggests that the variability in the structure is due to a slow

dynamics of the communities happening over different different days and repeating

with the period of a week. In the next section, we present a detailed analysis of

this two-time-scale behaviour. To verify the statistical significance of these results,

we validated them against an appropriate null model. The results, confirming our

findings, and are detailed in Section 6.3.

6.2 Period analysis of network structure

To investigate the periodic behaviour of the communication patterns, we employ

the same NMI comparison approach introduced in the previous section, by building

aggregates for each different day of the week. In other words, we construct seven

different networks, the first aggregating the data collected on all Mondays, the sec-

ond with the data from all Tuesdays, and so on up to the seventh network which

corresponds to all the Sundays. Then, we build a daily NMI matrix where each ele-

ment is the NMI between the structures detected on the corresponding aggregates.

The results, in Fig. 6.6A, show that different days are always very similar, with

an NMI consistently greater than 0.95. However, a difference is still evident be-

tween working days and weekends, in agreement with the daily analysis. In fact,

the NMI reaches its highest values when comparing either two working days or the

two days of the weekend, while the smallest values are found when comparing a

weekend day and a working day. This difference also corresponds to a higher value

of modularity for weekend days than for the rest of the week (Fig. 6.6B), supporting

the idea that on non-working days people tend to be active only within their closest

social circles. Note that these results illustrate the ease with which one can ex-

tract quantifiable information about the behaviour of people in social contexts from
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communication records, even if completely anonymized and already geographically

aggregated in their raw form.

The results found so far show that we can clearly detect the difference in popu-

lation behaviour over the different days of the week. However, human activities

also change at the shorter time scale of hours. Thus, we investigate the changes in

average community structure during a day by constructing 24 different networks,

each aggregating the data collected during the same hour every day. The NMI

matrix (Fig. 6.6C) shows a remarkable difference between daily and nightly commu-

nities. The structure of communities at night does not present particular patterns,

but we find blocks of high similarity during the day. A first block corresponds to

highly similar communities during morning hours, covering roughly the first part of

a working day. A second block can also be observed in the afternoon hours, when

the second part of a working day happens. Finally, a last block extends over the

evening hours. We find this result remarkable, in that it confirms that mobile phone

communications are closely related to human behaviour even at a community level.

Figure 6.6D shows the evolution of modularity for the hourly networks. We find that

the waking hours correspond in general to stronger communities, with modularity

dips in correspondence of the periods traditionally linked to lunch (12:00–13:00) and

dinner (20:00).

Finally, to clearly show the periodic nature of the network, we analyze the data

differentiating for given hours and days of the week. We create 168 networks, each

aggregating the data corresponding to the same hour and the same day of the week,

and perform an NMI analysis. The results, in Fig. 6.6E, show the emergence of a

clear structure, where partitions obtained at daytime hours are strongly similar, and

cluster in blocks with high values of NMI, separated by lower similarity partitions

corresponding to the nights. Investigating this result more closely, we notice that

higher similarities are observed between different daytime hours of the same day.

The evolution of modularity (Fig. 6.6F) displays again a similar pattern to the

one previously observed with two peaks in the value of modularity in the morning

and afternoon and a lower value during the night. However, we also find a peak

in the middle of the night, particularly strong during weekends. This might reflect

the fact that phone activity is naturally lower during the night. Thus, it is highly

likely that someone placing a nighttime call will not call more than a few close con-
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tacts, and will not receive a call back from people other than the persons originally

called. This results in strong communities and a high modularity. Similarly, we also

find a higher modularity during weekends than over weekdays, consistently with the

social dynamics outlined before. In addition to validating these findings against a

null model (Section 6.3), we also test their robustness using the method proposed

by Mucha et al. [182], obtaining results that support our methodology (details in

Section 6.4).

6.3 Null model validation

To validate the NMI analyses, we build a null model by fixing number and size of

the communities detected in each instance, and randomising the community labels

assigned to each node. We compute the NMI matrix averaged over 100 randomiza-

tions, and compare it with the one presented in the main text. This allows us to

verify whether our results can be attributed to randomness, or they represent an

effect present in the data. The results, shown in Fig.6.7, bear no resemblance to

those in the main text. Also, in all null models we observe that the patterns char-

acterizing the NMI matrices of the original data are absent. This shows that it is

very highly unlikely that the structures detected arose due to random fluctuations.

6.4 Weighted and multiplex analysis

To test the robustness of the results presented in the main text, we use the approach

described in [182]. This method provides a generalisation of the classical modularity

to the case of time-dependent and multiplex networks:

Qm =
1

2µ

∑
ijsr

[(
Aijs −

kiskjs
2ms

)
δsr + ωδij

]
δgis,gjr

where the indices i and j refer to nodes, the indices s and r refer to layers, ω is a

parameter that determines the strength of the coupling of a node to its copies in

the neighbouring layers, µ is the sum of all the strengths across all layers and gis is

the community of node i in layer s. This quality function is then maximised using a

generalisation of the Louvain method [177]. Notice that when ω = 0, the layers are

independent. Conversely, high values of ω increase the coupling to the point that

all the replicas of each node are treated identically. This causes the communities

found to be the same across layers, effectively neglecting the multiplex nature of the

network. Thus, for this type of analysis, one needs to find an intermediate value
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of ω that offers a compromise between the two extremes. In our case, we choose

ω = 0.1, as the value above which the differences between layers start to smoothen.

We consider the same thresholded networks used in the main text for each day

of the week and assign a different layer to each of them, thus creating a multiplex

network with 7 different layers. Figure 6.8 shows the NMI analysis of the partitions

of the individual layers for ω = 0 and ω = 0.1. In both cases, we obtain results

that are qualitatively similar to those presented in the main text. Moreover, the

multiplex modularity Qm in the two cases is 0.6935 and 0.6960, respectively, in

agreement with the average modularity of the seven networks presented in the main

text, which is 0.6934.

Studying the effect of preserving the link weights is also of great interest for the

application of this methodology. In the main analysis presented above, we used

a threshold parameter to remove weak links that may act as noise and mask the

community structure. Here, we build aggregated networks for each day of the week

keeping all links with their weights and analyze them with the method described

above. As before, each layer in the multiplex corresponds to an aggregate network

of a given day. Figure 6.9A shows that if we preserve all the links with their original

weights and leave the layers uncoupled, the difference between weekdays and week-

ends is not remarkable. Figure 6.9B depicts the results when the coupling between

the layers is ω = 0.1. As before, we observe a structure similar to the one presented

in the main text, with the exception of a difference in the typical Friday communi-

ties.

This last analysis supports our hypothesis that thresholding removes the noise in

the network and allows us to uncover the underlying community structure, while

leaving the relevant structural properties unchanged. We also see that, if we want

to keep all the links with their weights, a coupling between the layers is essential.

However, the size of the multiplex grows really quickly when considering several

layers, such as the hourly-weekly routine, where we would have 168 networks with

10000 nodes each. The multiplex could possible be even larger, depending on the

granularity of the data, making its analysis not always feasible. Our methodology,

instead, obtains valid results while analysing the networks separately, thus being

faster and demanding less resources.
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6.5 Conclusions

In conclusion, we have presented a complete characterization of the community

structure of a mobile phone call network and discussed its evolution over time, re-

vealing the spatial and temporal patterns in local communications. Our findings

suggest that information about people’s behaviour and their interactions in social

groups can be easily extracted from the community structure of networks induced

by communication records. In fact, our results provide direct evidence of how one

can use mobile phone activity to point out the occurrence of socially relevant events.

The ease with which our method can be applied, coupled to the high granular-

ity of the data available to telecommunication companies, suggests that it may be

useful even as a real-time tool to detect the occurrence of such events or activities,

as evidenced by our results related to the day of 12 December. Our work sup-

ports the hypothesis that data generated through interactions with technological

devices closely reflect human activity and can be used for quantitative studies of

social systems. Moreover, it illustrates the ease with which one can extract valuable

information even from completely anonymized and geographically aggregated data.

In addition, the community structures detected can provide substantial support to

telephone companies in the design and optimization of better, more efficient and

flexible infrastructures, decreasing operating costs and increasing performances.
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Figure 6.6: Weekly, daily, and hourly-weekly routines. Panels A, C and E
show the Normalised Mutual Information between partitions of aggregates corre-
sponding to different days, different hours, and different hours of each day, respec-
tively. Communication communities on weekends are evidently different from those
on working days. Also, waking hours are much more stable than the night, with
two clear blocks corresponding to working hours and evening time. Moreover, the
hourly-weekly analysis shows a striking structure corresponding to blocks of highly
similar communities during the daytime. The modularities for the three types of
networks (Panels B, D and F), show that communities are much tighter on weekends
and during waking hours than they are on weekdays and during the night, with the
exception of the weekend nights that are highly modular.
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Figure 6.7: Validation of NMI analyses. Randomized NMI matrices for the
daily (panel A), weekly (panel B), week aggregates (panel C), hourly (panel D) and
hourly-weekly (panel E) show values that are roughly constant across the matrix,
and always smaller than those observed in the original data. Also, we do not observe
the patterns characterizing the NMI matrix presented in the main text, such as the
separation between working days and weekends and the strong similarity between
daytime communities. Times are reported in Central European Time (CET).
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CHAPTER 7

FINDING NETWORK COMMUNITIES USING

MODULARITY DENSITY

Network science provides a useful framework for analysing several of the new data

sources that are becoming increasingly available. One of the key topological prop-

erties of many real-world networks is the community structure, as was discussed in

chapter 2 and shown in chapter 6.

In this chapter, we first present a short review of the most common community

detection methodology, show its limitations and then study a new quality function,

modularity density, that was originally introduced in [223, 224]. This new tech-

nique has been shown to address some of the shortcomings of existing methods. We

present a detailed analysis of its properties on synthetic networks typically used to

evaluate quality functions, as well as on random graphs, which are a commonly used

benchmark to test community detection methods. In addition, we describe a new

community detection algorithm based on this metric, and validate it on synthetic

and real-world networks, showing that it performs better than other currently avail-

able methods. Also, we argue that the nature of modularity density allows for a

direct quantitative comparison of community structures across networks of different

sizes.

87
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7.1 Traditional modularity and its limitations

The modularity Q of a network with N nodes and m links is defined as:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δCiCj ,

where A is the adjacency matrix of the network, ki is the degree of node i, Ci is

the community to which node i is assigned and δij is the Kronecker delta. The first

term accounts for the presence or absence of a link between node i and node j; the

second term, instead, is the expected number of links between node i and node j in

a random network with the same degree sequence as the original one.

A first limitation of modularity is that it is intrinsically dependent on the num-

ber and distribution of edges, rather than on the number of nodes. To see this,

denote by mC and eC the number of internal and external links of community C,

respectively. Moreover, let kC = 2mC + eC be the sum of the degrees of the nodes

in community C. With this notation, it is

Q =
∑
C∈C

[
mC

m
−
(
kC
2m

)2
]
, (7.1)

where C = {C1, C2, . . . , CP } denotes the set of all communities in the partition. In

this expression, each term in the sum refers to a different community. The first factor

of each term corresponds to the internal density of links in the community, whereas

the second factor encodes the expected density of links in the random network null

model. Now, introduce the positive parameter αC , representing the ratio of external

links to internal ones:

eC = αCmC .

The value of αC is smaller for strong communitites, and higher for weaker ones.

Then, we can write

Q =
∑
C∈C

[
mC

m
−
(

2 + αC
2m

)2

m2
C

]
. (7.2)

From this expression, it is clear that a community C gives a positive contribution

to Q only if:

mC <
4m

(αC + 2)2
.
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This implies that the condition for a community to give a positive contribution only

depends on the number of edges in the community and on the total number of edges

in the network, but not explicitly on the number of nodes.

A similar result can be obtained considering a network of κ communities discon-

nected from each other, along the lines of [179]. Under the assumption that all

groups have the same number of links, we can write

mC =
m

κ
,

eC = 0 ,

kC =
2m

κ
.

Then, from Eq. 7.1, it is

Q = κ

[
1

m

m

κ
−
(

1

2m

2m

κ

)2
]

= 1− 1

κ
. (7.3)

This shows that modularity converges to 1 with the number of communities κ re-

gardless of the internal properties of the communities, such as their size, or the

number of internal edges. As long as κ is very large and all communities have the

same number of edges m/κ, a network of disconnected trees has the same modular-

ity of a network of disconnected cliques. As before, we also see that the number

of nodes in each group does not explicitly contribute to Q, and, as an immediate

consequence, a network composed of few cliques has a smaller modularity than a

network composed of many disjoint trees.

In addition to these results, the effectiveness of modularity is not constant for all

edge densities. To determine its dependence on this quantity, we follow [225] and

connect the κ groups in a ring configuration, where each community is linked with

exactly one edge to the next one, and one edge to the previous one in the ring, for

a total of κ inter-community edges. In this scenario, we have

mC =
m

κ
− 1 ,

eC = 2 ,

kC =
2m

κ
.
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From Eq. 7.1, it follows that

Q = κ

[
1

κ
− 1

m
−
(

1

2m

2m

κ

)2
]

= 1− κ

m
− 1

κ
.

For constant m, this expression reaches its maximum when κ =
√
m, for which it is

Q = 1− 2√
m
.

Thus, the highest modularity corresponds to a partition in
√
m modules. Once

again, the number of nodes in the communities does not affect its largest possible

value. This major limitation of modularity is known as the resolution limit, and it

indicates that modularity, as a quality function for community detection, has an in-

trinsic scale proportional to
√
m. The number and size of the communities that can

be detected via modularity maximisation are bound to adhere to this limit, posing

a serious question on the significance of results obtained with this method. In fact,

in a more general framework, Fortunato and Barthélemy [225] have shown that,

under some circumstances, the resolution limit can even force pairs of well-defined

communities to be merged into a larger cluster, because this corresponds to a higher

modularity.

Finally, it is worth noting that the trivial partition where all the nodes are put

together in one single community, namely the whole network itself, has a modular-

ity of 0. This can be easily seen from Eq. 7.2, since in this case the sum has only

one term, αC = 0 and mC = m, so

Q =
m

m
− 4m2

4m2
= 0 .

At first, this might seem a desirable property for a quality function, since, intu-

itively, the trivial partition should not have a positive modularity. However, this

implies that any partition that achieves a modularity larger than 0 is retained as a

valid community structure. Since community detection algorithms try to maximize

modularity, it is often the case that such a positive value can be found even on

Erdős-Rényi random graphs [186]. To stress this point, the trivial partition with

Q = 0 can always be considered, but since one is interested in the maximum value

of Q, it is often discarded in favour of a clustering that achieves any positive value

of modularity. This poses a serious limitation to the ability of modularity-based

algorithms to partition random graphs correctly.
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Several variants of modularity have been proposed to address the resolution limit.

For instance, multi-resolution methods, such as the one described in [129], introduce

an additional tunable parameter η > 0 in the expression for Q:

Qη =
∑
C∈C

[
mC

m
− η

(
kC
2m

)2
]
.

Larger values of η cause Qη to be larger for partitions with smaller modules, whereas

smaller values favour larger communities. However, this approach suffers from simi-

lar limitations to those presented by the original modularity [226]. In particular, Qη

has two contrasting behaviours: small clusters tend to be merged together, while

large communities tend to be split into subgroups. Networks in which all the com-

munities are of comparable size are immune to this problem, and one can find a

value of η for which they can all be resolved. However, the existence of an optimal η

is not guaranteed in the general case. In particular, for networks whose community

sizes are heterogeneously distributed, e.g., following a power law, it is not possible

to find a value of η that avoids both problems. The reason for this is that the nature

of the resolution limit is more general than the specific definitions of modularity and

its multi-resolution extension. Several quality functions for community detection,

including the one just mentioned, can be derived within the general framework of a

first principle Potts model with Hamiltonian

H = −
∑
ij

[aijAij − bij (1−Aij)] δCiCj ,

where aij and bij are non-negative weights. Different choices for the weights result

in different quality functions. However, only those using non-local weights can be

truly free from the resolution limit [227], while all others, including modularity,

multi-resolution modularity and functions based on quantities such as betweenness,

shortest paths, triangles and loops, can never avoid it.

7.2 Modularity density

Recently, a new quality function called modularity density has been proposed to

overcome the issues outlined above [223, 224]. Given a network partition, modularity
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density is defined as

Qds =
∑
C∈C

{
2m2

C

mnC (nC − 1)

−
[

2mC + eC
2m

2mC

nC (nC − 1)

]2

−
∑
C̃ 6=C

m2
CC̃

2mnCnC̃

}
,

(7.4)

where nC is the number of nodes in community C, the internal sum is over all com-

munities different from C, and m
CC̃

is the number of edges between community

C and community C̃. This new metric brings two major improvements over tradi-

tional modularity. First, it contains an explicit penalty for edges connecting nodes

in different communities. This addresses the problem of the splitting of large com-

munities, since each split introduces external links and is thus penalized. Second,

all terms, including the penalty for inter-community edges, are explicitly weighted

by the community sizes. Therefore, a partition with many edges linking two small

communities is penalized more than one with the same number of edges linking two

large ones. Thus, modularity density introduces local dependencies that are not

found in traditional of modularity. Additionally, it is not related to the Potts model

Hamiltonian, thus avoiding the resolution limit problem. Note that Eq. 7.4 requires

nC > 1, which implies that partitions with communities consisting of an isolated

node are not allowed.

To investigate the properties of modularity density in more depth, rewrite the ex-

pression for Qds as

Qds =
∑
C∈C

[
mC

m
pC −

(
2mC + eC

2m
pC

)2

−
∑
C̃ 6=C

m2
CC̃

2mnCnC̃

 ,

(7.5)

where

pC =
2mC

nC (nC − 1)
.

The parameter pC can assume values between 0 and 1, since it is the fraction of

possible internal links actually present in community C. Thus, it measures the con-
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Figure 7.1: Modularity density increases with number of communities and their
edge density. In networks composed of κ disconnected modules, the modularity
density Qκds depends only on κ and the edge density of the communities p?κ. Fixing
one of the two parameters, Qκds always increases with the other.

nection density of the community, or, equivalently, the probability that two random

nodes inside C are connected. From Eq. 7.5 it is clear that having many internal

edges is not enough for a community to give a large contribution to modularity

density. In fact, a strong community is one where the density of edges, rather than

their number, is large. This also agrees with the intuitive notion that a community

is a group of nodes that are densely connected amongst each other. Thus, a good

partition is one that is characterized at the same time by a large number of intra-

community links and a high density of edges within the communities. Modularity

density achieves this by accounting for the number of nodes in each group and, in

this sense, it has a more natural dependence on the local properties of the network

and of the partition under consideration than does traditional modularity.

Next, it is instructive to study the behaviour of modularity density in the same

cases described in the previous section. First, consider a network partitioned in just

two communities, C and C̃. The contribution to Qds of community C is:

QCds =
mC

m
pC −

(
2mC + eC

2m
pC

)2

−
m2
CC̃

2mnCnC̃
.

Introducing the proportionality constant αC as before, it is

QCds =
mC

m

[
pC −

(2 + αC)2

4m
p2
CmC −

α2
CmC

2nC (N − nC)

]
,

where we used n
C̃

= N −nC and m
CC̃

= eC . Unlike what happens with traditional

modularity, the contribution of a single community depends explicitly on the number

of internal links and on the size of the community itself. Consider now again a
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network composed of κ disjoint communities. Assuming that each community has

the same number of nodes N/κ and the same number of edges m/κ, the modularity

density of such a network is:

Qκds = κ

[
p?κ
κ
−
(
p?κ
κ

)2
]

= p?κ

(
1− p?κ

κ

)
, (7.6)

where

p?κ =
2m

N
(
N
κ − 1

)
is the connection density of the communities. The first major difference between Eq. 7.3

and Eq. 7.6 is that Qκds depends not only on the number of communities, but also

on their density of edges, unlike traditional modularity, which only depends on κ.

Also, for a fixed value of κ, Qκds increases with p?κ (see Fig. 7.1). This is remarkable,

since it indicates that the strength of the partition increases as more links are added

within each group, in striking opposition with the behaviour of traditional modu-

larity. We also note that for a fixed value of p?κ, modularity density increases with

the number of communities. Its theoretical maximum is reached in the limiting case

of an infinite number of communities, with the special requirement that they are all

cliques. Moreover, in one more substantial difference with traditional modularity, a

network composed of few cliques in general has a higher modularity density than a

network composed of an infinite number of sparse communities.

Finally, we study the test case of the ring of κ communities each linked by a single

edge to the next community and a single edge to the previous one. As before, it is

mC = m/κ − 1 and eC = 2, In addition, m
CC̃

= 1 and nC = N/κ. Introducing the

variables

βκ =
m
κ − 1

m

and

p?κ =
2(mκ − 1)
N
κ (Nκ − 1)

,

we can write the modularity density as

Qring
ds = κ

[
βκp

?
κ −

(
βκ +

1

m

)2

(p?κ)2 − κ2

mN2

]
. (7.7)

The optimal number of communities is the one that maximizes this expression, or,

equivalently, the one for which its derivative vanishes. Differentiating Qring
ds with
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respect to κ, we obtain

∂Qring
ds

∂κ
= κβκ∂κp

?
κ − 2

(
βκ +

1

m

)
p?κ∂κpκ

+

(
βκ +

1

m

)2

(p?κ)2 +

(
βκ −

1

κ

)
pκ −

3κ2

mN2
,

with

∂κp
?
κ =

2
(
κ2 − 2κN +mN

)
N(κ−N)2

.

This expression does not have a simple general root in terms of κ. Rather, the solu-

tions depend on the local and global properties of the network. Thus, the number

of groups does not seem to be constrained by an intrinsic scale of order
√
m.

As briefly discussed above, a major drawback of traditional modularity is that

algorithms based on its maximization often find supposedly viable partitions on

graphs with no ground-truth community structure. In such cases, the correct par-

tition is either the one where all nodes are placed together, or the one with N

communities, each consisting of a single node. In either case, modularity vanishes.

Thus, modularity-maximizing algorithms often suggest spurious community struc-

tures simply beause they have a non-zero modularity. Conversely, from Eq. 7.5 it

follows that the one-group partition has a modularity density

Q1
ds = p (1− p) ,

where p is the network density. Note that this expression is a parabola, whose roots

are p = 0 and p = 1, which are the fully disconnected and fully connected graphs,

respectively. Thus, a partition’s Qds needs not only to be positive, but also to lie

above the parabola for an algorithm based on modularity density maximization to

accept it. We will see that this makes such algorithms not find communities on

random graphs, as should be the case for a reliable community detection method.

7.3 A modularity density maximisation algorithm

Having discussed the advantages of modularity density as a quality function, we

propose a community detection algorithm based on its maximization. Currently, the

only published modularity density algorithm [224] is based on iterations of two steps,

namely splitting and merging. The algorithm is divisive, starting from a partition

where all the nodes are placed in a single community and then using bisections.
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Each splitting is performed using the Fiedler vector of the network, which is the

eigenvector of the graph Laplacian corresponding to the second smallest eigenvalue.

The graph Laplacian L is defined as L = D−A, where D is the diagonal matrix of the

node degrees. The merging steps try to merge pairs of communities together if doing

so improves the current partition. The two steps are repeated until the partition

cannot be improved any longer, and the algorithm is deterministic, meaning that the

same initial network always yields the same partition. Here, we extend and adapt

an existing modularity maximisation algorithm, originally proposed in [186], which

achieves the largest published scores of traditional modularity. Along the lines of the

original method, our algorithm consists of four main steps, which we describe below.

Section 7.4 contains a fully detailed discussion of the algorithm implementation and

its computational complexity.

Bisection

In this step, we try to bisect the community under consideration. To do so, we use

the leading eigenvector of the modularity matrix. Despite suffering from the limita-

tions discussed above, modularity still provides a good initial guess for a partition

that is then refined by the subsequent steps.

Fine tuning

After every bisection, the partition can be often improved by using a variant of

the Kernighan-Lin algorithm [228]. We consider moving every node i from the

community into which it was assigned to the other. Every such move would result

in a change ∆Qids of the quality function, and we perform the move yielding the

largest of such changes ∆maxQ
i
ds. Note that we introduce here a non-deterministic

factor: given a tolerance parameter τacc, we consider all moves achieving a change of

modularity density within the interval
[
∆maxQ

i
ds − τacc,∆maxQ

i
ds

]
to be equivalent.

If more than one move falls within the acceptance interval, we randomly choose one

to accept. This stochasticity allows the algorithm to explore the partition space

without getting stuck on a local maximum, since it can accept moves that are not

always optimal. Once a move has been performed, the corresponding node is flagged

as blocked. Then, every non-blocked node is considered again and the procedure is

repeated, until all nodes have been considered. At the completion of an iteration of

this step, a decision tree is formed where each node of the tree represents a sequence

of nodes in the network switching community, with an associated ∆Qds equal to the

sum of all the changes in modularity density along the branches leading to the tree
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node. Then, we randomly choose a node in the decision tree amongst those achieving

the largest positive increase in modularity density within an interval determined

by the tolerance parameter τacc, and perform all the moves corresponding to the

chosen node. Finally, the whole step is repeated until no improvement in Qds can

be obtained.

Final tuning

A further refinement of a current partition can be achieved by performing an addi-

tional tuning step. In the final tuning, we consider every node i and try to move

it to every other possible community C already present in the partition. The step

is performed in a similar fashion to the fine tuning, repeatedly considering all the

moves which result in an increase of modularity density in a small interval defined

by the tolerance parameter τacc until all nodes have been moved. As before, we

build a decision tree of partial switches and then perform all the moves up to the

level in the tree that has been selected amongst those yielding the largest increase

in Qds. We repeat this step until no further refinements can be found.

Agglomeration

A step that merges pairs of communities is fundamental. First of all, unlike both

tuning steps, which are local because they only consider moving one node at a

time, merging communities is a non-local step that allows one to better explore the

landscape of modularity density [186]. For example, merging two entire communities

can result in an increase of the quality function while partial mergers, i.e., moving

only some nodes from one community to the other, could still have a lower score than

the starting partition. Therefore, using only local moves, one could discard those

partial mergers because they temporarily decrease the partition score, thus never

achieving the beneficial complete merging of the two communities. In the case of

modularity density, the agglomeration step is even more important, since no series of

local moves could ever produce the full merging of two communities. This happens

because modularity density does not allow communities of size 1. Thus, even if

local steps had succeeded in moving all nodes except two from one community to

another, any further move would be prohibited because it would result in a single-

node community. This makes a global move essential for our algorithm. In the

agglomeration step, we consider pairs of communities C and C̃ and try to merge

them. Each move results in a change in modularity density ∆QC,C̃ds and we randomly

choose the move amongst those in the interval
[
∆maxQ

C,C̃
ds − τacc,∆maxQ

C,C̃
ds

]
, where



CHAPTER 7. MODULARITY DENSITY 98

p
κ
*

0

Q
d
s

κ

N
C
=500

k=2

k=3

k=4

k=8

0.5 1
0

0.4

0.8 N
C
=100

N
C
=50

Figure 7.2: Modularity density for networks of κ disconnected communi-
ties. The predictions of Eq. 7.6 (solid lines) are confirmed by numerical
simulations throughout the range of p?κ and for different values of κ. For
each κ, we consider groups with 50, 100 and 500 nodes, respectively.
Additionally, and as expected, we observe that the value of modularity
density does not depend on the number of nodes in each community,
but only on the number of communities and their internal density. Each
point is the average over 100 network realizations.

∆maxQ
C,C̃
ds is the largest increase in modularity density achieved by any move. We

build a decision tree by progressively merging pairs of communities, until there is

only a single community left. We then look at the nodes in the tree corresponding

to the largest increase in modularity density but, in difference from the previous

steps, if more than one node results in the same increase, we select the one with

the smallest number of communities. The whole step is repeated until the current

partition cannot be improved further.

Summary

With these four steps, the algorithm can be summarised as:

• Start with a single community containing all nodes.

• Try to bisect the network using the leading eigenvector of the modularity

matrix.

• If the bisection was successful, then perform a fine tuning step.

• Iterate the bisection and fine tuning steps on each of the communities in the

current partition, until no further splitting and refinement can be performed.

• Perform the final tuning step.

• Perform the agglomeration step.
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• Repeat the sequence of steps until it is no longer possible to find an increase

in modularity density.

As described in detail in the next Section 7.4, the worst-case computational com-

plexity of the full algorithm is O
(
N2
)
.

7.4 Implementation details

Here, we provide a detailed description of the implementation of the algorithm pre-

sented above. To describe how the different steps are carried out, first we introduce

some notation. Let P = |C| be the size of the current partition. Then, let M be the

partition adjacency matrix of the network, i.e., the P × P matrix whose elements

m
CC̃

are the number of links between community C and community C̃. Also, let X

be the community spectra matrix, i.e., the N×P matrix whose elements xiC are the

number of links between node i and nodes in community C. Finally, let S be the P -

dimensional community size vector, whose elements are the sizes of the communities.

Note that our implementation uses three tolerance parameters:

1. Power method tolerance τpwm. This parameter determines the tolerance for

the floating-point comparisons in the power method.

2. Bisection tolerance τbs. Since a bisection with the leading eigenvector of the

classical modularity matrix does not guarantee an increase in modularity den-

sity, we introduce a tolerance τbs. After each bisection, we check the difference

between the new and old values of modularity density. A bisection is accepted

if modularity density increases or if it decreases by an amount smaller than

τbs (more details are given in Section 7.1.1).

3. Acceptance tolerance τacc. This parameter defines the size of the tolerance

range when finding the moves that maximally increase modularity density

during tuning and agglomeration steps.

7.1.1 Bisection

The first step in the algorithm attempts to bisect a community, which can be either

the whole network or a previously determined community, using the traditional

modularity matrix. To do so, we use the spectral method, which we briefly review
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here. The modularity matrix B is defined as

B = Aij −
kikj
2m

,

and the expression for the modularity of a given partition is

Q =
1

2m

∑
ij

BijδCiCj . (7.8)

Since we are only considering a potential bisection, Ci can only assume two values.

Thus, a partition can be represented by a vector s whose entries si are 1 and −1

if node i is assigned to the first or the second community resulting from the split,

respectively. Then, substituting the expression

δCiCj =
1

2
(sisj + 1)

in Eq. 7.8, it is

Q =
1

4m

∑
ij

Bijsisj .

The vector s can be expressed in terms of the normalized eigenvectors of B as

s =

N∑
i=1

ϑivi ,

where the ϑ are linear combination coefficients, and vi is the ith eigenvector of the

modularity matrix, corresponding to the eigenvalue λi. substituting in Eq. 7.8, we

obtain

Q =
1

4m

N∑
i=1

ϑ2
iλi .

If we label the eigenvalues so that λ1 > λ2 > · · · > λN , this expression is maximized

when s is parallel to the leading eigenvector v1. However, s is a vector whose entries

can only be ±1. Thus, we can only choose its elements to make it as parallel to v1

as possible. One way of achieving this is to set si = 1 if v1i > 0 and si = −1 if

v1i < 0. Then, the bisection consists in finding the leading eigenvector of B and, if

the corresponding eigenvalue is positive, dividing the nodes according to this rule.

Several metohds can be used to diagonalize B. Since we only need to find a single

eigenvector, and this step only provides a starting guess, we choose to use the power

method, which offers a good tradeoff between speed and accuracy.
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Consider a matrix B. We want to solve the following equation:

Bv = λmaxv

where λmax is the eigenvalue with the largest absolute value. Consider now to start

with a vector v0. The method iterates the following equation:

vk+1 =
Bvk
||Bvk||

until it converges. The two steps in the iteration, therefore, involve multiplying the

current approximate eigenvector vk by the modularity matrix B and then normal-

ising it.

In more detail, assume that the modularity matrix B has size N×N . It then has N

eigenvectors v1,v2, . . . ,vN and eigenvalues λ1, λ2, . . . , λN . Assume that the eigen-

values are ordered in decreasing absolute value, i.e. λmax = |λ1| > |λ2| > . . . > |λN |.
We can decompose our initial vector v0 on the basis of the eigenvectors of B:

v0 =
N∑
k=1

akvk = a1v1 + a2v2 + . . .+ aNvN

We can now perform the first iteration step by multiplying this equation by the

modularity matrix B on both sides:

Bv0 = a1Bv1 + a2Bv2 + . . .+ aNBvN

= a1λ1v1 + a2λ2v2 + . . .+ aNλNvN

Iterating a second time:

B(Bv0) = a1λ1Bv1 + a2λ2Bv2 + . . .+ aNλNBvN

= a1λ
2
1v1 + a2λ

2
2v2 + . . .+ aNλ

2
NvN

It is clear, then, that repeated iterations yield the following:

Bkv0 = a1λ
k
1v1 + a2λ

k
2v2 + . . .+ aNλ

k
NvN

= λk1

[
a1v1 + a2

(
λ2

λ1

)k
v2 + . . .+ aN

(
λN
λ1

)k
vN

]
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Remembering that the eigenvalues are ordered in decreasing order, we can write

that: (
λi
λ1

)k
→ 0 as k →∞,∀ i > 1

From which:

Bkv0 → a1λ
k
1v1 as k →∞

Or, more formally:

lim
k→∞

(
Bkv0

λ1

)k
= a1v1

We should note here that this method only works if a1 6= 0. In our initial choice

for v0, therefore, we need to make sure that it has a non-zero value on the com-

ponent parallel to the leading eigenvector. Typically, we choose the entries of v0

to be random values and then normalise the vector to 1. In principle, we can then

compute the leading eigenvalue and the corresponding eigenvector of the modularity

matrix. However, the power method does not tell us anything about the sign of the

eigenvalue. The iterations could converge to the eigenvector corresponding to the

largest negative eigenvalue, which is of no interest for our purposes. To account for

this, we need to introduce an adaptation of the method described so far.

Assume that the power method, after sufficient iterations, has converged to a neg-

ative eigenvalue denoted Λ (Λ < 0). Let x be the corresponding eigenvector:

Bx = Λx

We can then note the following:

(B − Λ1)x = Bx− Λ1x = Λx− Λx = 0

which means that, if x is the eigenvector corresponding to the largest negative

eigenvalue of B, then x will also be an eigenvector of (B − Λ1) with eigenvalue

0. Moreover, since Λ was the largest negative eigenvalue, by shifting the matrix B

up by Λ, we ensured that all eigenvalues of the new matrix are now non negative.

A new set of iterations of the power method on the shifted matrix, therefore, will

converge to the largest (and positive) eigenvalue.

Assume now that y is an eigenvector of B with eigenvalue |λ| < |Λ|:

By = λy
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We can easily see that y is also an eigenvector of the shifted matrix:

(B − Λ1)y = By − Λ1y = λy − Λy = (λ− Λ)y = (λ+ |Λ|)y

So that y is an eigenvector of the shifted matrix with eigenvalue λ+ |Λ|.
Using the same trick, we can also solve a similar potential issue of the method. We

could not only be facing the situation where the leading eigenvalue is negative, but

also the scenario where there are two leading eigenvalues, one positive and one neg-

ative, of similar absolute value. In such a scenario, our estimate for the eigenvalue

might start oscillating between these two eigenvalues, and corresponding eigenvec-

tors. As before, a shift in the matrix would not change the eigenvectors and would

only result in a constant shift in the eigenvalues. After the shift, we do not have

eigenvalues of similar magnitude and, therefore, the power method can then con-

verge to the correct answer.

At the end of the method, the absolute value of the shift is subtracted from the

leading eigenvalue to give the correct final answer for the largest positive eigenvalue

of the original modularity matrix.

In Algorithm 1 we provide a detailed implementation of the power method. Further

consideration must be given to the fact that we are performing a bisection based on

the modularity matrix, whereas our aim is to maximize modularity density. The po-

tential problem is that a bisection based on modularity might not result in a larger

value of modularity density. To avoid this, we introduce a tolerance parameter τbs,

whose role is to determine the largest possible decrease in modularity density that

we want to accept when bisecting. In other words, if after the bisection the modu-

larity density of the new partition has decreased by a value larger than τbs, we do

not accept the split, and keep the original partition. We consider only one exception

to this rule, namely the first iteration of the bisection. At the start of the algorithm,

all nodes are placed together and we try to bisect the whole network. At this point,

we accept any bisection in order to allow at least a whole iteration of the whole

algorithm. Indeed, if we didn’t accept that, both the tuning and agglomeration

steps could not be executed, thus leaving the network not partitioned. Note that

not partitioning the network could be the correct answer, but we want to make sure

that we have considered other partitions as well at least once. If not partitioning

the network is the best answer, this will be found by the agglomeration step, that

will merge all the communities together.
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Algorithm 1

1: procedure Power Method
2: g ← random normalised vector . initial guess for eigenvector
3: Λ← 0 . Initial value for eigenvalue
4: while 1 do
5: for i < N do g = g +B ∗ g . B is the modularity matrix
6: end for
7: Λ̃← Λ . previous best guess for leading eigenvalue
8: Λ←

√
||g|| . update current best guess for leading eigenvalue

9: g ← g
Λ . normalise eigenvector

10: if |Λ− Λ̃| < τpwm then . if method is converging
11: break
12: end if
13: end while
14: if Λ < 0 then . if the leading eigenvalue found is negative
15: shift← Λ
16: B ← B + Λ1 . shift the modularity matrix
17: repeat lines from 4 to 13
18: end if
19: if shift= 0 then . if the shift is zero, check for oscillations
20: perform 100 iterations of lines from 4 to 13
21: if leading eigenvalue oscillates then
22: shift B and repeat lines from 4 to 13
23: end if
24: end if
25: λ← Λ− |shift| . largest positive eigenvalue
26: v ← g . corresponding eigenvector
27: end procedure
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Finally, we note that the previous expression for B is correct only when consid-

ering the whole network. When trying to partition a single community C which

does not contain all the nodes, we need to construct an nC × nC sub-modularity

matrix BC whose elements are

BC
ij = Aij −

kikj
2m
− δij

(
kCi − ki

kC
2m

)
,

where kCi is the degree of node i within the community C. Using this matrix, we

then perform the bisection step as described above.

In Algorithm 2, we present a detailed description of the implementation of this

step. For each community, the computation of the leading eigenvalue through the

power method requires O (mcnc) steps. Thus, the worst-case complexity of the the

bisection step is O (mN).

7.1.2 Tuning steps

The crucial part of both the fine tuning and final tuning steps is that they try to

move individual nodes to different communities. Thus, we need to consider what

happens to the current partition and how M , X and S change when we move a node

i from community C to community C̃. Figure 7.3 provides an intuitive scheme to

illustrate the changes that follow from such a move. In general, both the number of

internal and external links of C will change, since node i is leaving this community.

However, to correctly update the modularity density, we also need to keep track of

the changes in all the specific numbers of links between C and every other community

in the current partition. Similarly, we need to ensure that the internal and external

links of C̃ are updated correctly. Finally, the sizes of the two communities changes

as well as a consequence of the move. Below, we describe how to efficiently perform

these updates.

Updating the partition adjacency matrix

The partition adjacency matrix M keeps track of the number of edges between each

pair of communities, as well as the internal number of edges of each community in

its diagonal elements. Looking at Fig. 7.3, one can see that the following quantities

change:

• The number of internal links of the community C that node i is leaving de-
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Algorithm 2
Pseudocode for the bisection step.

1: procedure Bisection Step
2: flag first bisection ← 1 . flag that this is the first bisection
3: w ← 1 . w is the community under consideration
4: |S| ← 1 . Current number of communities
5: while w ≤ |S| do
6: current number of nodes ← S[w] . S is the community size vector
7: current nodes labels ← find nodes in S[w]
8: B ← construct B . B is modularity matrix of the current nodes
9: if current number of nodes > 2 then

10: leading λ, leading v ← power method(B)
11: end if
12: if v has at least two negative and two positive components then
13: flag bisection ← 1
14: end if
15: if λ > 0 & flag bisection then
16: bisection(v, current nodes labels, current number of nodes)
17: |S| ← |S|+ 1
18: if old Qds− new Qds > τbs and flag first bisection= 0 then
19: cancel bisection
20: flag[w]← 1
21: flag fine tuning ← 0
22: end if
23: if S[w] > 2 or S[w + 1] > 2] and flag fine tuning then
24: fine tuning(current number of nodes, current nodes labels)
25: end if
26: flag first bisection ← 0
27: else
28: flag[w]← 1 . Flag w as blocked
29: end if
30: flag fine tuning ← 1
31: if flag[w] then
32: w ← w + 1
33: end if
34: end while
35: end procedure
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Algorithm 3
Pseudocode for the fine tuning step.

1: procedure Fine Tuning Step
2: flag increase ← 1 . Flag if there is an increase in modularity density
3: while flag increase do
4: flag increase ← 0 . Reset the flag
5: for i1 < current number of nodes do
6: for i2 < current number of nodes do
7: if flag node[i2] = 0 then . if node i2 is not blocked
8: if x

i2,C̃
> 0 then

9: ∆Qds[i2]← change in Qds if i2 changes community
10: end if
11: end if
12: end for
13: max ∆Qds ← maximum increase in Qds
14: find all nodes within τacc from max ∆Qds
15: node to move ← pick randomly between nodes with max ∆Qds
16: flag node[node to move]← 1
17: fine tuning tree[i1]← fine tuning tree[i1 − 1] + max ∆Qds
18: end for
19: max ∆Qds ← max( fine tuning tree)
20: if max ∆Qds > 0 then
21: find all steps within τacc of max ∆Qds
22: step in fine tuning tree ← pick randomly step with max ∆Qds
23: perform all updates in fine tuning tree until the chosen step
24: flag increase ← 1
25: end if
26: end while
27: end procedure

creases by the internal degree of node i, which is the number of links it has to

other nodes in C.

• The number of internal links of the community C̃ that node i is moving to

increases by the number of links node i has with other nodes in C̃.

• The number of links between the old and the new community of node i in-

creases by the number of links between i and its old community, and decreases

by the number of links between i and its new community.

• The number of links between the old community C and all the other commu-

nities C̄ /∈
{
C, C̃

}
decreases by the number of links between i and nodes in

C̄.
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Figure 7.3: Schematic illustration of node i moving from community C to com-
munity C̃.

• The number of links between the new community C̃ and all the other commu-

nities C̄ /∈
{
C, C̃

}
increases by the number of links between i and nodes in

C̄.

In formulae:

mC → mC − xiC
m
C̃
→ m

C̃
+ x

iC̃

m
CC̃
→ m

CC̃
+ xiC − xiC̃

mCC̄ → mCC̄ − xiC̄ ∀C̄ /∈
{
C, C̃

}
m
C̃C̄
→ m

C̃C̄
+ xiC̄ ∀C̄ /∈

{
C, C̃

}
,

where we dropped the repeated index for the diagonal elements of M to keep the

notation consistent.

Updating the community spectra matrix

The rows of the matrix X are the community spectra of the nodes, containing the

numbers of links that each node forms with nodes in all the individual communities in

the current partition. When a node i changes community, its community spectrum

does not change. However, every neighbour of i will experience a change in the

number of connections it has to nodes in the old and new communities of i. In

particular, in moving node i from C to C̃, the following changes happen:

• Since i is no longer in community C, all the nodes connected to i have one

link less to C.

• Since i is now in community C̃, all the nodes connected to i have one connection
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more to C̃.

In formulae:

xlC → xlC − 1 ∀l | Ail = 1

x
lC̃
→ x

lC̃
+ 1 ∀l | Ail = 1 .

Updating the community size vector

Algorithm 4
Pseudocode for the final tuning step.

1: procedure Final Tuning Step
2: flag increase ← 1 . Flag if there is an increase in modularity density
3: while flag increase do
4: flag increase ← 0 . Reset the flag
5: for i1 < N do
6: for i2 < N do
7: if flag node[i2] = 0 then . if node i2 is not blocked
8: for C̄ < |S| do
9: if xi2,C̄ > 0 then . if i2 has links to C̄

10: ∆Qds[i2][C̄]← change in Qds if i2 goes to C̄
11: end if
12: end for
13: end if
14: end for
15: max ∆Qds ← maximum increase in Qds
16: find all nodes within τacc from max ∆Qds
17: node to move ← pick randomly between nodes with max ∆Qds
18: flag node[node to move]← 1
19: final tuning tree[i1]← final tuning tree[i1 − 1] + max ∆Qds
20: end for
21: max ∆Qds ← max( final tuning tree)
22: if max ∆Qds > 0 then
23: find all steps within τacc of max ∆Qds
24: step in final tuning tree ← pick randomly step with max ∆Qds
25: perform all updates in final tuning tree until the chosen step
26: flag increase ← 1
27: end if
28: end while
29: end procedure
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Algorithm 5
Pseudocode for the agglomeration step.

1: procedure Agglomeration Step
2: flag increase ← 1 . Flag if there is an increase in modularity density
3: while flag increase do
4: flag increase ← 0 . Reset the flag
5: for C̃ < |S| do
6: for C̄ < |S| do
7: if flag community[C̄] = 0 then . if C̄ is not blocked
8: for Ĉ < |S| do
9: if flag community[i3] = 0 & mC̄,Ĉ > 0 then

10: ∆Qds [C̄][Ĉ]← change in Qds if we merge C̄ and Ĉ
11: end if
12: end for
13: end if
14: end for
15: max ∆Qds ← maximum increase in Qds
16: find pairs of communities within τacc from max ∆Qds
17: communities to merge ← pick between those with max ∆Qds
18: flag community[C̄|Ĉ]← 1 . Flag only the one with largest index
19: agglomeration tree[i1]← agglomeration tree[i1 − 1] + max ∆Qds
20: end for
21: max ∆Qds ← max( agglomeration tree)
22: if max ∆Qds > 0 then
23: step in agglomeration tree ← picks step with max ∆Qds and smallest

number of communities
24: perform all updates in agglomeration tree until the chosen step
25: flag increase ← 1
26: end if
27: end while
28: end procedure

The updates to this vector are straightforward:

SC → nC − 1

S
C̃
→ n

C̃
+ 1 .

Change in modularity density

Since Qds is defined as a sum over all current communities, we consider the terms in

its expression (Eq. 7.4) separately, and show how they change when node i moves

from community C to community C̃. We first look at what happens to the contri-
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butions of a community C̄ different from C and C̃. In this case, the only changes

happen for two terms in the internal sum:

∑
Ĉ 6=C̄

m2
C̄Ĉ

2mnC̄nĈ
→

∑
Ĉ /∈{C,C̃,C̄}

m2
C̄Ĉ

2mnC̄nĈ
+

(mC̄C − xiC̄)2

2mnC̄ (nC − 1)
+

(
m
C̄C̃

+ xiC̄
)2

2mnC̄
(
n
C̃

+ 1
) .

Then, we consider the contribution of community C:

2m2
C

mnC (nC − 1)
→ 2 (mC − xiC)2

m (nC − 1) (nC − 2)

2mC + eC
2m

2mC

nC (nC − 1)
→

2 (mC − xiC) + eC + xiC −
∑

C̄ 6=C xiC̄

2m

2 (mC − xiC)

(nC − 1) (nC − 2)∑
Ĉ 6=C

m2
CĈ

2mnCnĈ
→

∑
Ĉ /∈{C,C̃}

(
mCĈ − xiĈ

)2
2m (nC − 1)nĈ

+

(
m
CC̃

+ xiC − xiC̃
)2

2m (nC − 1)
(
n
C̃

+ 1
) .

Finally, we consider the contribution of community C̃:

2m2
C̃

mn
C̃

(
n
C̃
− 1
) → 2

(
m
C̃

+ x
iC̃

)2
m
(
n
C̃

+ 1
)
n
C̃

2m
C̃

+ e
C̃

2m

2m
C̃

n
C̃

(
n
C̃
− 1
) → 2

(
m
C̃

+ x
iC̃

)
+ e

C̃
− x

iC̃
+
∑

C̄ 6=C̃ xiC̄

2m

2
(
m
C̃

+ x
iC̃

)(
n
C̃

+ 1
)
n
C̃∑

Ĉ 6=C̃

m2
C̃Ĉ

2mn
C̃
nĈ
→

∑
Ĉ /∈{C,C̃}

(
m
C̃Ĉ

+ xiĈ
)2

2m
(
n
C̃

+ 1
)
nĈ

+

(
m
C̃C

+ xiC − xiC̃
)2

2m
(
n
C̃

+ 1
)

(nC − 1)
.

In Algorithm 3 and Algorithm 4, we present a detailed description of the imple-

mentation of the tuning steps. The complexity of computing the potential change

in modularity density is O (P ), since we have to consider all the communities to

update the split penalty term. For the fine tuning, this process is repeated N times

per node, yielding a complexity of O
(
PN2

)
. In the final tuning, instead, all com-

munities are considered as potential targets, introducing an extra factor of P in the

complexity, which becomes O
(
P 2N2

)
. Note that these are worst case scenarios,

since we typically do not have to consider all communities for the updates, because

each node is only connected to a subset of them.

7.1.3 Agglomeration

The agglomeration step attempts the merger of pairs of communities. If a merger

is carried out, a community is obtained whose size is the sum of the sizes of the
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original ones. A delicate point is deciding the label of the new community. In our

implementation, we always keep the smaller of the two labels. So, for instance, if we

merge community 1 with community 4, the resulting community will be labelled 1

and community 4 will disappear. We then need to reassign the links of every node in

the network to the new community, and also zero any link to the old community that

disappeared. Below, we describe how to efficiently perform the required updates,

assuming a merger between community C and community C̃ in which the label of

the resulting community is C.

Updating the partition adjacency matrix

The following changes happen to the partition adjacency matrix:

• The number of internal links of the merged community is the sum of the

internal links of the two original ones plus the number of links between the

two.

• All the links of community C̃ vanish, since it has been merged with community

C.

• The number of links between the new community and any other community C̄

is the sum of the number of links between each of the two original communities

and C̄.

In formulae:

mC → mC +m
C̃

+m
CC̃

m
C̃
→ 0

m
C̃C̄
→ 0 ∀C̄ ∈ C

mCC̄ → mCC̄ +m
C̃C̄

∀C̄ /∈
{
C, C̃

}
.

Updating the community spectra matrix

The number of connections between every node i and the merged community is the

sum of the number of links between i and each of the two original communities, and

no node is connected to community C̃ since it doesn’t exist any more:

xiC → xiC + x
iC̃

x
iC̃
→ 0 .
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Updating the community size vector

The changes to the Community Size Vector are once again straightforward:

SC → nC + n
C̃

S
C̃
→ 0

Change in modularity density

As before, we consider the terms in the definition of modularity density separately,

showing how they change for the merger considered. For the contribution of commu-

nities C̄ other than C and C̃, the only changes happen in two terms in the internal

sum:

∑
Ĉ 6=C̄

m2
C̄Ĉ

2mnC̄nĈ
→

∑
Ĉ /∈{C,C̃,C̄}

m2
C̄Ĉ

2mnC̄nĈ
+

(
mC̄C +m

C̄C̃

)2
2mnC̄

(
nC + n

C̃

) .
Then, we consider the contribution of community C:

2m2
C

mnC (nC − 1)
→

2
(
mC +m

C̃
+m

CC̃

)2
m
(
nC + n

C̃

) (
nC + n

C̃
− 1
)

2mC + eC
2m

2mC

nC (nC − 1)
→

2
(
mC +m

C̃
+m

CC̃

)
+ eC + e

C̃
− 2m

CC̃

2m

2
(
mC +m

C̃
+m

CC̃

)(
nC + n

C̃

) (
nC + n

C̃
− 1
)

∑
C̄ 6=C

m2
CC̄

2mnCnC̄
→

∑
C̄ /∈{C,C̃}

(
mCC̄ +m

C̃C̄

)2
2m
(
nC + n

C̃

)
nC̄

.

Finally, the contribution of community C̃ entirely vanishes.

In Algorithm 5, we present a detailed description of the implementation of

the agglomeration step. The computational complexity is O
(
P 4
)
. Analogously to

the tuning steps, this is the worst case scenario. In a typical situation, a community

is only connected to a few others, and thus one does not need to update all the

terms in the partition adjacency matrix.

7.1.4 Community detection algorithm

Finally, in Algorithm 6 we provide a detailed description of how the steps pre-

sented above are linked together in our community detection algorithm. The overall

complexity of the algorithm is dominated by the final tuning step, which is the

most computationally expensive, with a complexity O
(
P 2N2

)
. Along the lines
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Algorithm 6
Pseudocode for the community detection method.

1: procedure Community Detection
2: w ← 1 . Community under consideration
3: flag repetition ← 1 . Flag if there is an increase in modularity density
4: while flag repetition do
5: flag repetition ← 0
6: Q̃ds ← Qds
7: Bisection
8: if Current number of communities > 1 then
9: Final Tuning

10: Agglomeration
11: ∆Qds ← Qds − Q̃ds . Change in Qds
12: if ∆Qds > 0 then
13: w ← 1 . Restart from the first community
14: flag repetition ← 1 . Repeat the whole algorithm
15: end if
16: else
17: flag repetition ← 0
18: end if
19: end while
20: end procedure

of [223, 224], we consider P a constant, and thus the worst-case complexity reduces

to O
(
N2
)
. To minimize running times, we take advantage of the independence of

the incremental computing steps. Both the fine tuning and final tuning try to move

nodes from one community to a different one. The calculations of the potential

change in modularity density are independent of each other and thus can be per-

formed in parallel, rather than serially. This task is fairly straightforward, and our

implementation exploits the widely used C library Open MP to allow an efficient

parallelization using multiple threads on each computing node during the tuning

and agglomeration steps.

7.2 Validation

To validate our algorithm, we test it on several synthetic and real-world networks.

First, we verify that it reproduces the theoretical predictions on networks of dis-

connected communities and on rings of modules, discussed in Section 7.1 and Sec-

tion 7.2. Then, we analyse its behaviour on random networks belonging to different

ensembles. Finally, we run it on a set of benchmark networks, comparing the results
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Figure 7.4: Modularity density for rings of communities. We simulate
ring networks composed by with a varying number of communities κ and compare
the theoretical values of modularity density with the results of our algorithm. In
panel (a) we consider networks of κ fully connected cliques, finding a perfect agree-
ment between theoretical value (solid line) and simulations (squares). In panel (b),
we build networks with different fixed values of κ and vary their internal density.
Note that, differently from (a), here the groups are not fully connected. The the-
oretical values (lines) and simulation results match precisely. In both panels, each
point is the average over 100 realizations of the same network.

with the best ones currently published.

7.2.1 Disconnected communities and rings

First, we consider networks formed by κ disconnected communities. Equation 7.6

indicates that the modularity density of such networks depends only on the connec-

tion probability p?κ and on κ itself, but not on the size of each community. We find

an exact agreement between the simulation results and the theoretical prediction

for all the values of κ (Fig. 7.2). We also note that the values of modularity density

found in the simulations do not depend on the number of nodes in the communities.

As a second test, we simulate two types of ring networks of communities. We start

by making the communities cliques of 5 fully connected nodes, and vary κ from 3

to 20. From Eq. 7.7, the expected modularity density of these networks is

Qring
ds = κ

[
βκ −

(
βκ +

1

m

)2

− κ2

25m

]
.

The comparison between the modularity density predicted by this expression and

the values obtained in our simulations is shown in Fig. 7.4(a). We find a precise

agreement between the two, showing that our algorithm correctly identifies the

cliques without splitting them, and finds the right value of modularity density. Next,

we build ring networks in which we fix κ and vary the community density p?κ. Each
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Figure 7.5: Modularity density on Erdős-Rényi graphs. We build ensem-
bles of random networks, with different sizes and different densities, comparing the
theoretical modularity density (solid line) and the one found by our algorithm. Up
to finite-size effects for the smallest and least dense networks, we find a perfect
agreement between theoretical prediction and simulation results, with all the re-
sults collapsing on the same curve. Each point is the average over 1000 realizations
of the same network parameters.

community contains 50 nodes, and we vary p?κ from 0.2 to 1, performin the test for

κ = 10, κ = 15 and κ = 20. The results, in Fig. 7.4(b), show a perfect agreement in

all cases, again indicating that our algorithm correctly partitions the networks.

7.2.2 Random networks

As we argued in the previous sections, a desirable feature of a community detec-

tion algorithm is that it does not propose a complex partition of graphs without

ground-truth community structure. To verify that our algorithm satisfies this re-

quirement, we test it on Erdős-Rényi random graphs. For graphs in this ensemble,

every possible edge between N nodes exists independently with probability p. Thus,

the average number of edges is 1
2Np (N − 1). These networks do not have any true

community structure, since all their edges are fully random, and thus they are one of

the benchmarks against which community detection algorithms are often tested. For

our simulations, we create networks with values of p from 0.15 to 0.90 and number of

nodes 50, 100, 500 and 1000. The results, in Fig. 7.5, show that for all network sizes,

the average modularity density matches almost perfectly the theoretical prediction.

Even for small networks, where finite-size effects are largest, the values lie in close

proximity to the theoretical parabola and we can only observe a small deviation for

the smallest networks at low values of p. Also note that all the results collapse on

the theoretical curve, which does not depend on network size. These results repre-

sent a major improvement over modularity-based algorithms, that typically detect

communities even on Erdős-Rényi networks.
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Figure 7.6: Modularity density for LFR networks. We run our algorithm
on random LFR networks without community structure, with N = 500 nodes and
varying parameters. In particular, we let the mean degree 〈k〉 assume the values
15, 25, 35, 44 and 55, and the largest degree kmax be 150, 200 and 250. For each
combination of the parameters, we generate 100 networks and for each we record
the edge density p and the largest modularity density our algorithm finds. The plot
shows considerable agreement between the theoretical modularity density (solid line)
and the one found by the algorithm. The only deviations appear for γ = 2 and low
p, and they are probably due to the breakdown of the model for this limiting value
of the degree distribution exponent.

However, it is well known that most real-world networks are not well represented by

Erdős-Rényi graphs. Rather, they are characterized by heterogeneous degree distri-

butions. Thus, to further verify the performance of our algorithm, we test it on LFR

networks [180]. These constitute a set of widely-used benchmark networks, whose

distributions of degrees and community sizes follow a power-law P (k) ∼ k−γ . For

our tests, we fix the network size to N = 500 and vary the other parameters, namely

the exponent γ of the degree distribution, the mean degree 〈k〉 and the largest degree

kmax. Also, we ensure that the networks thus created contain a single community,

so that no actual community structure is present. We run our algorithm on the

networks thus generated and compare its results with the theoretical expectations.

The results, presented in Fig. 7.6, show that for γ = 2.5 and γ = 3, the modularity

density found by the algorithm closely follows the predicted value for networks of

all densities. We do observe, however, some deviations from the predicted values at

γ = 2. This is probably due to the fact that, asymptotically, no networks exist with

a pure power-law degree distribution for γ < 2 [127]. Thus, in the limit of γ = 2,

and particularly for low densities, a spurious structure of stars with bridges appears,

effectively introducing communities in the networks.
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Table 7.1: Accuracy validation. The comparison between the published results
and the ones obtained with our algorithm on real-world and synthetic benchmark
networks shows that our algorithm always performs better than the current best
one. All the already published results are found in [224].

Benchmark Qds Qds,pub p p(1− p)
Karate Club 0.235 0.231 0.139 0.120
Football Club 0.490931 0.4909 0.0935 0.0848
LFR, µ = 0.05 0.5220± 0.0039 0.4979 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.10 0.4638± 0.0033 0.4522 0.0154± 0.0001 0.0152± 0.0001
LFR, µ = 0.15 0.4249± 0.0030 0.4013 0.0157± 0.0002 0.0155± 0.0002
LFR, µ = 0.20 0.3982± 0.0054 0.384 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.25 0.3465± 0.0085 0.3347 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.30 0.2986± 0.0034 0.2619 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.35 0.2546± 0.0101 0.2377 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.40 0.2340± 0.0069 0.199 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.45 0.2029± 0.0064 0.169 0.0156± 0.0001 0.0154± 0.0001
LFR, µ = 0.50 0.1579± 0.0027 0.1385 0.0156± 0.0001 0.0154± 0.0001

7.2.3 Benchmark networks

We now verify the performance of our algorithm on some well known networks,

for which results of the maximum modularity density obtained so far are available.

The first is Zachary’s Karate Club network [229]. This is a friendship network be-

tween 34 members of a karate club in a U.S. university during the 1970s and it

has become one of the most standard benchmarks to test community detection al-

gorithms. The interest in this network lies in the fact that, not long after it was

recorded, the club split into two subgroups due to internal problems between two

members, namely the manager and the coach. Thus, a traditional challenge is to

be able to detect these two groups based only on the friendship data available in

the network topology, under the assumption that the members would decide to fol-

low whichever leader they were more strongly related to between the coach and the

manager. Of the 561 possible edges in the network, only 78 of them are present,

making the network fairly sparse, with an effective connection probability p ≈ 0.139.

A second benchmark network we consider is the American College Football Club

network [159]. Here, the nodes represent different college football clubs and an edge

connects two teams if there has been a regular-season game between them during

the 2000 season. This network is known to have a natural community structure

because the teams are divided into different leagues, thus making matches between

teams more or less likely depending on the group they belong to. Finally, we con-
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sider again some LFR benchmark networks, choosing a set of parameters for which

already published results exist. Table 7.1 presents a comparison between the results

obtained using our algorithm and the best results available in the literature. Be-

cause of the stochasticity within our method, for each value of the mixing parameter

µ, we create 10 realizations of the network and run the algorithm 100 times on each,

reporting the average maximum modularity density found. In all cases considered,

our algorithm finds a partition with higher modularity density than the best one

currently published.

7.3 Conclusions

Communities are a fundamental structure that is often present in real-world com-

plex networks. Thus, the ability to accurately and efficiently detect them is of great

relevance to the analysis of complex data sets. Despite their success, traditional

methods based on modularity have been shown to suffer from limitations. We have

presented a detailed analysis of the properties of modularity density, an alterna-

tive quality function for community detection, showing that it does not suffer from

the drawbacks that affect traditional modularity. In particular, modularity density

does not depend separately on the size of the network or the number of edges, but

only on the combination of these two properties in terms of the density of links

within the communities. As a consequence, it allows a direct quantitative compar-

ison of the community structure across networks of different sizes and number of

edges. At the light of these considerations, we have introduced a new community

detection algorithm based on modularity density maximization. Investigating its

performance on Erdős-Rényi and heterogeneous random networks, we showed that

it correctly identifies them as containing no actual communities. Moreover, our al-

gorithm outperforms the other existing modularity-density-based method on every

benchmark network that we tested. The high level of accuracy it reaches, its low

computational complexity, and the ability to properly identify networks with no

ground-truth communities make it a powerful tool to investigate complex systems

and extract meaningful information from the network representation of large data

sets, giving it a broad range of application throughout the physical sciences.



CHAPTER 8

CONCLUSIONS

Our interactions with technological systems, such as mobile phone networks and the

Internet, generate a vast amount of data at an incredible pace. These data can be

used to create an extremely detailed picture of our collective behaviour, our decision

making processes, our interests, hobbies and several other aspects of our daily lives.

These insights have the potential to help a range of stakeholders, including policy

makers, who have an interest in understanding our collective behaviour in order to

design a smarter and more sustainable society.

The studies described in this thesis provide insights into how these new forms of data

may offer an unprecedented opportunity to improve our understanding of human

behaviour. Previous work has demonstrated how the sudden availability of large

and complex datasets has encouraged scientists to study our collective behaviour.

Researchers have studied human mobility, how users experience the places where

they live, and more generally the relationship between our behaviour on the Inter-

net and in the real world. Here, we have shed light on several new aspects of our

interactions with technological systems.

Financial transactions, such as buying or selling a stock, were historically one of

the first sources of data containing detailed records of our decision making pro-

cesses. In the first study presented in Chapter 3, we focussed on the behaviour of

stocks in the Dow Jones Inudstrial Average index. Our analysis shows that the

distribution of changes in stock market prices exhibits power law decay for short

time scales, and exponential decay for larger time scales. Our findings may inform

120



121

the development of models of market behavior across varying time scales.

However, this is only one specific aspect of our decision making processes. Our

interactions with technological systems, such as the Internet or mobile phone net-

works, are generating data which can offer insights into several other aspects of our

lives. Indeed, in Chapters 4 and 5, we have shown how we can use the information

contained in geolocated data derived from our ordinary interactions with smart-

phones and social media platforms, such as Twitter and Instagram to estimate the

size of a crowd. Our findings suggest that these datasets could be used to infer the

number of people in a given location at a given time. Such insights could be of great

importance in emergency situations where crowd dynamics are critical and can lead

to crowd collapses, such as evacuations or mass gatherings.

Our mobile phone records contain information not only on individual users and

where they are, but also on our social interactions through phone calls. The spatial

and temporal structure of how we interact with other people offers the opportunity

to investigate yet another aspect of our behaviour. In Chapter 6, we have presented

an analysis of the community structure of the network of mobile phone calls in the

metropolitan area of Milan revealing spatial and temporal patterns of communica-

tions between people. Our findings suggest that the evolution of communities on a

network induced by mobile phone calls capture the temporal evolution of our be-

haviour in everyday life.

The complexity of these new forms of data requires an increasingly complex set

of methodologies. The results of research in the area of network science have led

to the creation of a rich set of techniques to extract meaningful information from

complex data sets. Here, we have studied in great detail the properties of a function,

called modularity density, that can be defined on the partition of any network to

measure its community structure. We have shown how it addresses drawbacks of

existing methods, and we have introduced a sophisticated, yet efficient, algorithm

based on this function. We have also shown how our algorithm outperforms analo-

gous methods on a set of standard benchmark networks. Since modularity density

has only recently been introduced, its properties were still mostly unknown. Our

work helped to gain a greater understanding of modularity density and how it can

be used to detect communities on complex networks.

Our work has laid the foundations for several novel streams of research. We have
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shown how geolocated information, such as that we share on social media platforms,

can be used to infer the size of a crowd in a given location at a given time. How-

ever, emergency situations, such as protests, might require more dynamic estimates.

Further research can build on our findings and investigate whether data from social

media platforms can be used to study how the crowd may move or how its size

may vary. Researchers could also look at early signs of a large event taking place,

and analyse whether the information flow on social media services can provide early

estimates of the number of people attending it.

Recent methodological advancements in the area of multilayer networks will also be

crucial in the analysis of data derived from different social media platforms. Each

platform is only able to provide information on a specific subset of the population,

which may be biased or not representative of the overall population. Multilayer net-

works offer the opportunity to integrate information coming from different sources

in a unified framework.

Our analysis of the community structure of a mobile phone network has given insight

into the evolution of our communication patterns. However, a plethora of techniques

for analysing communities on networks is available, including the novel algorithm

presented here. Further work could explore the robustness of our results when using

different methodologies for finding communities on complex networks. This is a

question of interest since the wide range of techniques, including recent techniques

based on Bayesian statistical inference, provides a challenge for researchers inter-

ested in exploring network properties in their data.

Several extensions to our novel community detection algorithm could also be in-

vestigated. A major computational improvement could come through the use of

computing on graphics processing units to perform some of the most computation-

ally intensive steps, such as the two tuning steps. This could significantly reduce

running times, thus making our algorithm feasible for larger networks. Further the-

oretical work could extend our work to different types of networks, such as weighted,

directed and multilayered.

All in all, we have seen how the analysis of complex social datasets coupled with

complex methodologies can offer unprecedented insights into human behaviour. We

have seen how our interactions with technological systems can help us gain insight

into different aspects of our society, from studying the properties of a crowd, to the
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interactions between people making phone calls. The increasing availability of com-

plex datasets requires constant development of the methodologies needed to analyse

them. Here, we proposed developments to algorithms which can help us increase

our understanding of community structure.

Together, the increasing availability of novel datasets alongside rapid development

of new methodologies in data science represents an opportunity to dramatically

improve our understanding of our collective behaviour and our society.
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and Yamir Moreno. Structural and dynamical patterns on online social net-

works: The Spanish May 15th movement as a case study. PLOS ONE,

6:e23883, 2011.
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Bailón, Alex Arenas, Yamir Moreno, and Alessandro Vespignani. The dynamic

of information-driven coordination phenomena: a transfer entropy analysis.

Science Advances, 2:e1501158, 2016.

[51] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. The

anatomy of a scientific rumor. Scientific Reports, 3:2980, 2013.

[52] Andrea Baronchelli, Vittorio Loreto, and Francesca Tria. Language dynamics.

Advances in Complex Systems, 15:1203002, 2012.

[53] Delia Mocanu, Andrea Baronchelli, Nicola Perra, Bruno Gonçalves, Qian
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[79] Sandra González-Bailón, Ning Wang, Alejandro Rivero, Javier Borge-

Holthoefer, and Yamir Moreno. Assessing the bias in samples of large online

networks. Social Networks, 38:16–27, 2014.

[80] Vincent D Blondel, Adeline Decuyper, and Gautier Krings. A survey of results

on mobile phone datasets analysis. EPJ Data Science, 4:10, 2015.

[81] Gianni Barlacchi, Marco De Nadai, Roberto Larcher, Antonio Casella, Cris-

tiana Chitic, Giovanni Torrisi, Fabrizio Antonelli, Alessandro Vespignani, Alex

Pentland, and Bruno Lepri. A multi-source dataset of urban life in the city of

Milan and the Province of Trentino. Scientific Data, 2:150055, 2015.

[82] Pierre Deville, Catherine Linard, Samuel Martin, Marius Gilbert, Forrest R

Stevens, Andrea E Gaughan, Vincent D Blondel, and Andrew J Tatem. Dy-

namic population mapping using mobile phone data. Proceedings of the Na-

tional Academy of Sciences, 111:15888–15893, 2014.

[83] Harald Sterly, Benjamin Hennig, and Kouassi Dongo. “Calling Abidjan” –

Improving population estimations with mobile communication data. Mobile

Phone Data for Development - Analysis of mobile phone datasets for the de-

velopment of Ivory Coast, pages 1–7, 2013.

[84] Rex W Douglass, David A Meyer, Megha Ram, David Rideout, and Dongjin

Song. High resolution population estimates from telecommunications data.

EPJ Data Science, 4:4, 2015.

[85] Renaud Lambiotte, Vincent D Blondel, Cristobald de Kerchove, Etienne

Huens, Christophe Prieur, Zbigniew Smoreda, and Paul Van Dooren. Geo-

graphical dispersal of mobile communication networks. Physica A, 387:5317–

5325, 2008.

[86] Gautier Krings, Francesco Calabrese, Carlo Ratti, and Vincent D Blondel.

Urban gravity: a model for inter-city telecommunication flows. Journal of

Statistical Mechanics: Theory and Experiment, 2009:L07003, 2009.

[87] Cesar A Hidalgo and C Rodriguez-Sickert. The dynamics of a mobile phone

network. Physica A, 387:3017–3024, 2008.
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Jesus Gómez-Gardeñes, Miguel Romance, Irene Sendiña Nadal, Zhen Wang,

and Massimiliano Zanin. The structure and dynamics of multilayer networks.

Physics Reports, 544:1–122, 2014.
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