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a b s t r a c t

One challenge of biology, medicine, and economics is that the systems treated by these
serious scientific disciplines have no perfect metronome in time and no perfect spatial
architecture—crystalline or otherwise. Nonetheless, as if by magic, out of nothing but
randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned
structures in space. Further, many of these processes and structures have the remarkable
feature of ‘‘switching’’ from one behavior to another as if by magic. The past century has,
philosophically, been concernedwith placing aside the human tendency to see the universe
as a fine-tuned machine. Here we will address the challenge of uncovering how, through
randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at
some of the many spatial and temporal patterns in biology, medicine, and economics
and even begin to characterize the switching phenomena that enables a system to pass
from one state to another. Inspired by principles developed by A. Nihat Berker and scores
of other statistical physicists in recent years, we discuss some applications of correlated
randomness to understand switching phenomena in various fields. Specifically, we present
evidence from experiments and from computer simulations supporting the hypothesis
that water’s anomalies are related to a switching point (which is not unlike the ‘‘tipping
point’’ immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena
that occur on all scales are not ‘‘outliers’’ (another Gladwell immortalization). Though
more speculative, we support the idea of disease as arising from some kind of yet-to-
be-understood complex switching phenomenon, by discussing data on selected examples,
including heart disease and Alzheimer disease.

© 2010 Published by Elsevier B.V.

1. Correlated randomness & switching phenomena: Introduction

The title I have given to this talk, ‘‘Correlated Randomness’’, is owed in part to interactions with biological and medical
researchers. Many of them believe that randomnessmeans uncorrelated randomness. They learn that statistical physics deals
with random phenomena, so they assume that our field cannot possibly yield any insights into the real world as they
correctly know that no system inwhich they are interested corresponds to simple uncorrelated randomness. Hencewe found
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Fig. 1. (a) The trail of a randomwalk of 104 steps, compared with (b) the trail of a self-avoiding randomwalk of the same number of steps. The ‘‘correlated
randomness’’ of the latter results in drastically different behavior. Specifically, the characteristic diameter jumps by a factor of 10, from approximately
(104)1/2 = 100 to approximately (104)3/4 = 1000, where we have used the fact that the fractal dimensions (defined as the exponent to which the length
is raised to obtain the mass) are 2 and 4/3 respectively.
Source: This figure is courtesy of S.V. Buldyrev.

using the adjective ‘‘correlated’’ helped persuade our collaborators that what we do may possibly be applicable to systems
in which they are interested.
To help educate our collaborators, as well as ourselves, we have learned to present simple visual examples of the concept

of correlated randomness. One example we found useful was to visually compare a simple, unbiased random walk in
two dimensions (‘‘uncorrelated randomness’’) and a simple, self-avoiding random walk in two dimensions (‘‘correlated
randomness’’). In the case of the uncorrelated walk, the spread of a 104 step path is 102. In the correlated random walk,
the spread of a 104 step path is on the order of 103 steps, a full order of magnitude larger (Fig. 1). Thus a simple ‘‘microscopic
correlation’’, that a path cannot intersect itself, leads to a dramatic change in macroscopic behavior [1].
Indeed, 100 years ago most of our understanding of systems was based on the assumption that the constituents were

basically uncorrelated, and so we understood well ideal gases, and ideal paramagnets. When correlations were introduced,
gases developed a completely new phenomenon, the liquid state. And paramagnets developed a completely new magnetic
phenomenon, the ferromagnetic state.
A second simple example of correlated randomness that people from all research fields can appreciate is critical

opalescence, first discovered and interpreted – in terms of correlated randomness – by Thomas Andrews, M.D., in
1869 [2]. Critical points can occur in two-component fluids but also in one-component fluids—the so-called liquid–gas and
liquid–liquid phase transitions [3]. In the more traditional two-component fluid, the concentrations of the two components
and the temperature have been adjusted so that the system is near its consolute point. The correlated fluctuations observed
at that consolute point are not uncorrelated, but rather are correlated over length scales comparable to the wavelength
of light and over time scales comparable to the persistence time of human vision. One can see scattering of visible light
(wavelength on the order of thousands of atomic spacings) in the form of an opalescent glow and a flickering in time.
In this talk, I will discuss recent applications of correlated randomness to three areas of science for which statistical

physics is becoming useful: liquid water, economics, and physiology/medicine. I organize each of these seemingly unrelated
topics around the same three questions: (i) what is the question or problem that has emerged from the area of inquiry? (ii)
why should we (practically and scientifically) care about this question or problem? and (iii) what have we actually done in
response to the question or problem?
Our overall ‘‘take-home’’ message today sounds pretty general. In general, systems that display correlated randomness

cannot be solved exactly. Not even the simplest two-dimensional self-avoiding random walk can be solved, and the Ising
model can be solved only in the limiting case of zero magnetic field and spatial dimension of two. Nonetheless, there
are two unifying principles that have organized many of the results we will be presenting today—scale invariance and
universality [4].

2. Correlated randomness & switching phenomena in water

2.1. What is the phenomenon?

We start with three thermodynamic functions. The first is the compressibility—the response of the volume to an
infinitesimal change in pressure. In a typical liquid, this response function decreases when we lower the temperature.
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Fig. 2. Schematic dependence on temperature of (a) the isothermal compressibility KT , (b) the constant-pressure specific heat CP , and (c) the thermal
expansivity αP . The behavior of a typical liquid is indicated by the dashed line, which, very roughly, is an extrapolation of the high-temperature behavior
of liquid water. Note that while the anomalies displayed by liquid water are apparent above the melting temperature Tm , they become more striking as
one supercools below Tm .

I understand this decrease via statistical physics. This thermodynamic response function is proportional to the thermal
average of all the fluctuations in specific volume in the system. As we lower the temperature, we imagine that fluctuations
of necessity decrease, thus the compressibility decreases.
Water is unusual in three respects. First, the average compressibility of water is twice as large as what one would expect

were water a typical fluid and were one to plug all the prefactors into the formulas that give compressibility in terms of
volume fluctuations. Second, the magnitude of that factor of two actually increases as one lowers the temperature. That
being the case, there is ultimately aminimum—which occurs at 46 °C. Below that temperature, the compressibility increases
dramatically. At the lowest attainable temperature (−40 °C) the compressibility takes on a value that is twice of that at the
minimum. This is not a tiny effect; it is huge (Fig. 2).
The second thermodynamic function is the specific heat, and we observe three similar anomalies: it is twice as large as

that of a typical liquid, the discrepancy gets bigger as the temperature is lowered, and a minimum occurs at 35 °C.
The third thermodynamic function is the coefficient of thermal expansion, the response of the volume to an infinitesimal

change in temperature. This quantity we assume to always be positive because if there is a local region of the liquid in which
the specific volume is larger than the average, then therewill bemore arrangements of themolecules and hence the entropy
will be larger than the average. This is true of almost all liquids, but the magnitude of this cross-fluctuation of volume and
entropy inwater is approximately three times smaller thanwewould expect, and at 4 °C the coefficient of thermal expansion
passes through zero and actually becomes negative.
In addition to anomalies in thermodynamic functions, there are anomalies in dynamic behavior. For example, the viscos-

ity and inverse diffusion constant of a typical liquid decrease when pressure is applied, while for water at low temperatures
the reverse occurs (see, e.g., the work of M. Barbosa and collaborators [5]).
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Fig. 3. Physical arguments relating to the plausibility of the existence of the known liquid–gas critical point C and the hypothesized LDL-HDL critical point
C′ . (a) Idealized system characterized by a pair interaction potential with a single attractive well. At low enough T (T < Tc ) and high enough P (P > Pc ), the
system condenses into the ‘‘liquid’’ well shown. (b) Idealized system characterized by a pair interaction potential whose attractive well has two sub-wells,
the outer of which is deeper and narrower. For low enough T (T < Tc′ ) and low enough P (P < Pc′ ), the one-phase liquid can ‘‘condense’’ into the narrow
outer ‘‘LDL’’ sub-well, thereby giving rise to a LDL phase, and leaving behind the high-density liquid phase occupying predominantly the inner subwell. (c)
Two idealized interaction clusters of water molecules (‘‘Walrafen pentamers’’) in configurations that may correspond to the two sub-wells of (b).
Source: This figure is courtesy of Dr. Osamu Mishima.

2.2. Why do we care about this anomalous behavior?

It is widely acknowledged that if we do not understand water we cannot understand biology. Scientifically, water is the
prototype complex fluid. It is not a simple, ‘‘bag-of-marbles’’ liquid, but a ‘‘bag of tetrahedra’’–charged tetrahedra interacting
with long-range Coulomb forces.

2.3. What do we do?

Our approach is based on the fact that water has a tetrahedral local geometry. In this sense water shares features with
other liquids such as silicon, silica, and carbon. Because water is both tetrahedral and chargedmeans that a simple Lennard-
Jones potential is not sufficient to describe its complexity. One way to modify the Lennard-Jones potential to provide at
least a simplified description is to bifurcate the single minimum into two minima. The first minimum, at a closer distance,
corresponds to two pentamers (a water molecule and its four neighbors) of water interacting with each other in a rotated
configuration. The second minimum, at a greater distance, occurs in the unrotated position (Fig. 3). This second position is
a deeper minimum because although the pentamers are farther apart there is the potential for hydrogen bonding between
the molecules and we can see the beginnings of an ice-like hexagonal structure [6–8].
The important point is that there are twominimawith the outer one corresponding to a larger specific volume – because

the distance is larger – and a lower entropy. The possibility is that liquid water could at low temperatures condense not
into a single phase – as we anticipate when a gas with a simple interaction like a Lennard-Jones potential condenses into a
fluid – but into two different phases. This possibility was first raised by Takahashi 60 years ago and various elaborations of
this model have been made by a number of people [9–11]. Hence at low temperatures there will be enhanced entropy and
volume fluctuations, and enhanced anticorrelations between entropy and volume (since the deeper outer well corresponds
to lower entropy but higher specific volume). The consequences of this fact qualitatively explain the phenomenon we were
describing at the beginning—volume fluctuations are increased, entropy fluctuations are increased, and cross-fluctuations
of volume and entropy are decreased. This singularity-free picture has been actively studied for the past 31 years [12–16].
Additional scenarios are discussed in Ref. [17] (see Fig. 4).
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Fig. 4. Possible scenarios for water for different values of H bond energies J̃ of the covalent (or directional) component, and J̃σ of the cooperative (or
three-body) component, obtained from MF calculations [17]. (i) If J̃σ = 0 (red line along x-axis), the singularity free (SF) scenario is realized, independent
of J̃ . (ii) For large enough J̃σ , water would possess a first-order liquid–liquid phase transition line terminating at the liquid–gas spinodal—the critical point
free (CPF) scenario; the liquid spinodal would retrace at negative pressure, as in the stability limit (SL) scenario (yellow region in top left). (iii) For other
combinations of J̃ and J̃σ , water would be described by the liquid–liquid critical point (LLCP) scenario. For larger J̃σ , the LLCP is at negative pressure (ochre
region between dashed lines). For smaller J̃σ , the LLCP is at positive pressure (orange region in bottom right). Dashed lines separating the three different
regions correspond to MF results of the microscopic cell model. The P–T phase diagram evolves continuously as J̃ and J̃σ change. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Courtesy of Kevin Stokely and Marco G. Mazza.
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Fig. 5. Schematic illustration indicating the various phases of liquid water (color-coded).
Source: This figure is courtesy of Dr. Osamu Mishima.

It has been speculated that at low temperatures there will be a genuine phase transition in which the single component
liquid actually separates into two different phases. The implications of this when applied to real water molecules produce
a phase diagram of liquid water (Fig. 5). This liquid–liquid phase transition hypothesis was first proposed on the basis of
computer simulations [18]. A first test of this hypothesis is that at very low temperature we find a glassy phase, not unlike
that of any other liquid except that at high pressure this glassy phase suddenly switches from a low-density form to a high-
density form. These two forms correspond to the two different local arrangements characteristic of water tetrahedra. The
order parameter jump between these two phases is not a trivial amount, but on the order of 30% [19].
Between the liquid and glassy phases of water we have a region in which water does not exist as a liquid—a ‘‘No Man’s

Land’’. The hypothesis that follows from the reasoning we have just described is that this first order phase transition line
known to separate the two amorphous forms of solid water extends into this No Man’s Land and ultimately terminates at
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Fig. 6. Constant pressure specific heat CP and specific heat associated with tetrahedral entropy CQP of water at atmospheric pressure for TIP5P model of
water.
Source: Courtesy of Pradeep Kumar.

a critical point. Just as the glassy water first-order transition line separates a low-density amorphous from a high-density
amorphous phase of water, so also this extension of the line into the liquid region separates a low-density liquid from a
high-density liquid. The power-law behavior uncovered over the years by Angell, Anisimov and collaborators corresponds
to the fact that the extension of this first-order line beyond the critical point—the ‘‘Widom line’’, defined to be the locus of
maximum correlation length [20–23]. Experiments on a path approaching theWidom line display phenomena that initially
look as though there will be a divergence, as the correlations increase. However since the correlation length itself is not
infinite, there will ultimately be rounding.
The degree of ordering and disordering of local tetrahedrality of water upon changing thermodynamic variables, such

as pressure or temperature, offers a simple measure of order and disorder in the case of liquid water. Kumar and his
collaborators derive a relation for the subset of the structural entropywhich is associatedwith the degree of local tetrahedral
ordering [21]. They find that the most relevant part of the total entropy fluctuations (or the specific heat) of water comes
from the tetrahedral fluctuations — suggesting that the fluctuations of local tetrahedrality of water contributes the most
to the total specific heat [21]. Moreover, the specific heat associated with the tetrahedral ordering CQP behaves identically,
within error bars, to the total specific heat C totalP (Fig. 6), consistent with the qualitative idea that the principal contributor to
temperature dependence of the entropy is the angular variables, not the translational variables. In particular, both functions
display clear maxima at the Widom line, which is equivalent to saying that at the Widom line the entropy fluctuations are
a maximum (and the dependence of entropy on temperature is a maximum).
This phase diagram is hypothesized, but it has not been proved. What has been proved is that computer simulations

using tried and tested models of liquid water confirm the broad features of this phase diagram (see, e.g., Refs. [24–27] and
refs. therein). But computer models of water (like computer models of anything) are subject to the charge ‘‘garbage-in,
garbage-out’’—you get out what you put in. All computer models of complex systems such as liquid water are of necessity
simplifications.
Here we are guided by exact solutions of simplified models. Simplified models are designed less for the purpose of

matching experimental detail, but rather to capture the essential physical features of a real system to explore the effect
of these features. A family of models introduced first by Jagla seems to reveal the fact that in order for a system to display
a liquid–liquid phase transition, the essential feature of an interaction potential must be that it has not one but rather two
characteristic length scales (see Ref. [28] and references therein).
Current experiments on this problem are of two sorts. The first is a set of experiments inspired by Mishima that

involves probing the NoMan’s Land by studying the metastable extensions of the melting lines of the various high-pressure
polymorphs of ice: ice III, ice V, ice IV, and ice XII [29,30]. Two of these lines clearly display ‘‘kinks’’. Since the slope of any
melting line is the difference of the volume change divided by the entropy change of the two phases that coexist at that line,
if there is a change in slope there must be a change in these quantities. Since there is no change in the crystal part, there
must be a change in the liquid part. This means the liquid must undergo a jump in either its volume or its entropy or both.
That is the definition of a first-order phase transition.
The second sort of experiments avoid the existence of a no-man’s land by using water confined either in nanotubes

or near the surface of a macromolecule. These experiments, carried out largely in the research groups of S.-H. Chen and
F. Mallamace, are consistent with the possibility of a liquid–liquid phase transition [31–46]. Other novel collective behavior
of water is under active investigation, e.g., S. Han and collaborators have found evidence for a solid–liquid critical point in
confined water films [47].
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Fig. 7. The S&P 500 index is the sum of the market capitalizations of 500 companies. The sharp jump seen in 1987 is the market crash of October 19.
Comparison of the time evolution of the S&P 500 for the 35-year period 1962–96 (top line) and a biased Gaussian randomwalk (bottom line). The random
walk has the same bias as the S&P 500 —approximately 7% per year for the period considered.
Source: This figure is courtesy of Vasiliki Plerou and Parameswaran Gopikrishnan.

3. Correlated randomness & switching phenomena in economics

3.1. What is the phenomenon?

One quarter of any newspaper with a financial section is filled with economic fluctuation data. Most economic graphs
look approximately like the onewe get whenwe plot the S&P 500 stock index as a function of time over 40 years (Fig. 7). We
can compare this empirical data with that generated by a simple uncorrelated biased random walk, a model first used over
100 years ago by Bachelier. At first it seems that there is little difference, but looking more closely we see events in the real
data that do not have counterparts in the random walk. Black Monday in October 1987 is reflected in the real data, which
shows a loss of about 30% of the total value of the market in just one day. In the random walk we do not see fluctuations
anywhere near this magnitude because the probability of taking n steps in the same direction of a randomwalk is (1/2)n—it
decreases exponentially with n.
Economists nevertheless have traditionally used this uncorrelated biased Gaussian random walk to describe real

economic data, relegating events such as Black Monday to the dustbin category of ‘‘outliers’’.

3.2. Why do we care?

We physicists do not like to do things this way. We do not take Newton’s law seriously part of the time, and then – if
we suddenly see an example of what appears to be levitation – simply call it an ‘‘outlier’’. We like to find laws that describe
all examples of a phenomenon. Economists themselves, in a journal called The Economist, have admitted failure. This is a
strong motivation for we physicists to step in and try our hand—we sense a delicious scientific challenge. Also, practically
speaking, catastrophic economic events such as Black Monday have extreme societal impacts. Widespread suffering is the
usual outcome, especially among the poor. The ability to predict economic crashes (and other large-scale risks) would have
an obvious utility.

3.3. What do we do?

We return to our two graphs, the S&P 500 stock index as a function of time over 40 years and the simple uncorrelated
biased random walk, and plot not the absolute value of the index but instead the change in the index (the numerical
derivative, the ‘‘return’’).Wenormalize that by the standard deviation.We look in Fig. 8 over a 13-year period rather than our
original 40-year period of Fig. 7 and see, e.g., that on Black Monday the fluctuations were more than 30 standard deviations
(both positive and negative) for the day. We also note obvious time correlations in the volatility. Perhaps more striking
is to look at the other curve, the uncorrelated random walk, and see the Gaussian distribution for the fluctuations—with
no fluctuations greater than five standard deviations. The ‘‘outliers’’ that the economists are content to live with are any
fluctuations of the actual data that are greater than five standard deviations. In this 13-year period there are exactly 64,
i.e., 26. If we count only those fluctuations of the actual data that are greater than ten standard deviations, we get exactly 8,
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Fig. 8. Sequence of 10-min returns for the S&P 500, normalized to unit variance, compared with sequence of i.i.d. Gaussian random variables with unit
variance, whichwas proposed by Bachelier as amodel for stock returns. Note that, in contrast to the top curve, there are no ‘‘extreme’’ events in the bottom
curve.
Source: This figure is courtesy of Vasiliki Plerou and Parameswaran Gopikrishnan.

i.e., 23. If we count only those that are greater than 20, we get one, i.e., 20: Black Monday. Each time we double the x-axis
we change the y-exist by a power of 23. This behavior is consistent with a functional equation of the form

f (λx) ∼ λpf (x). (1)

Functional equations have as their solutions functional forms, and the solution to the homogeneous functional equation is
a power-law form. From visual inspection of the raw data in Fig. 8, we see a power law of the ‘‘inverse cubic’’ form

f (x) = x−3 (2)

which corresponds to a functional equation, a scaling equation, with p = −3.
If we replace our visual examination of these two graphs with a close computer analysis of not just the the S&P 500

stock index but every stock transaction over an extended time period (approximately one GB of data), we find [48,49] that
the actual graph giving the number of times a fluctuation exceeds a given amount as a function of that amount is perfectly
straight on log-log paper out to 100 standard deviations (Fig. 9). The slope of the line, α, is indistinguishable from the value
α = 3 that we guessed from visual inspection. Note also that our slope is outside the Lévy stable regime [50].
This is how we find laws in statistical physics, but finding new empirical laws in economics is useful. It is useful for

practical reasons, one can quantify risk—produce an actual number for the chance some fluctuating quantity changes by a
given amount. It is also useful for conceptual reasons, since knowing the empirical laws places constraints on the range of
acceptable theoretical idea. A mathematical economist has been heard to say ‘‘if you know the answer, then that is cheating
because the theory already knows what answer to get’’.
When we studied critical phenomena 40 years ago (when Berker was an MIT student), the empirical part was a

very important contributor toward our ultimate understanding of phase transitions and critical phenomena. Uncovering
empirical facts led to the recognition of regularities to which certain approaches could be applied, e.g., the Widom scaling
hypothesis and theWilson renormalization group. So also in economics we can perhaps first discover empirical regularities
– e.g., the inverse cubic law – that will prove useful in ultimately understanding the economy. We have the beginnings
of an explanation, but it is only the beginning since the current theory explains the inverse cubic law of price changes, as
well as the ‘‘half cubic law’’ of trade volume [51] but does not explain the strange nature of the temporal correlations. The
autocorrelation function of price changes decays exponentially in time so rapidly that after 20min it is in the level of ‘‘noise’’
(Fig. 10). However the autocorrelation function of changes in the absolute value of the price (called the ‘‘volatility’’) decays
with a power law of exponent approximately 0.3 (Fig. 11) [52].
However, how can we characterize trend switching processes in financial markets? At first glance, price fluctuations on

financial markets appear to be completely random. In order to uncover the patterns formed by correlated randomness, one
has to find an appropriate ‘‘metronome’’ that is able to ‘‘synchronize’’ these sudden trend reversals occurring on time scales
from very large down to very small. One leading candidate as a metronome for financial markets is the local extreme value
in the price time series.
Such an analysis can provide insight into switching processes in complex systems in general and financial systems in

particular. The study of dramatic crash events is limited by the fortunately rare number of such events. Increasingly, one



2888 H.E. Stanley et al. / Physica A 389 (2010) 2880–2893

Scaled returns

Positive tail
Negative tail

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

= 3

Fig. 9. Cumulative distributions of the positive and negative tails of the normalized returns of the 1000 largest companies in the TAQ database for the
2-year period 1994–1995. The solid line is a power-law regression fit in the region 2 ≤ x ≤ 80. Shown for comparison is the behavior of a Gaussian
function with the same value of the standard deviation. Note the striking fact that traditional theories based upon assumed Gaussian functional forms for
this distribution predict that the probability of a fluctuation larger than 5 standard deviations is approximately 8 orders of magnitude smaller than the
probability of an everyday event. In contrast, the empirical data demonstrate that the probability of a fluctuation larger than 100 standard deviations is
approximately 8 orders of magnitude smaller than the probability of an everyday event.
Source: This figure is courtesy of Vasiliki Plerou and Parameswaran Gopikrishnan.
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Fig. 10. Semilog plot of the autocorrelation function for the S&P 500 returns G1t (t) sampled at a1t = 1min time scale, C1t (τ ) ≡ [〈G1t (t)G1t (t + τ)〉 −
〈G1t (t)〉2]/[〈G1t (t)2〉 − 〈G1t (t)〉2]. The straight line corresponds to an exponential decay with a characteristic decay time τch = 4 min. Note that after 20
min the correlations are at the noise level.
Source: This figure is courtesy of Vasiliki Plerou and Parameswaran Gopikrishnan.

seeks to understand the current financial crisis by comparisons with the depression of the 1930’s. Here we ask if the smaller
financial crises – trend switching processes on all time scales – also provide information of relevance for large crises. If this
is so, then the large abundance of data on smaller crises should provide quantifiable statistical laws for bubbles on all scales.
To analyze switching processes of financial fluctuations, we first propose how a switching process can be quantitatively

analyzed. Let p(t) be the transaction price of trade t , which is a discrete variable t = 1, . . . , T . A transaction price p(t) is
defined to be a local maximum of order1t if there is no higher transaction price in the interval t −1t ≤ t ≤ t +1t , and is
defined to be a local minimum of order1t if there is no lower transaction price in this interval (Fig. 12) [53].
However, the time series of transaction prices provides only themetronome, withwhichwe analyze volume fluctuations

v(t) from one beat of the metronome to the next. We use 500 price time series of all 500 S&P500 constituents (2.6 million
data points) and a price time series of the German DAX Future (14 million data points) [54]. The volume is the number of
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Fig. 11. Log–log plot of the autocorrelation function of the absolute returns. The solid line is a power-law regression fit over the entire range, which
gives an estimate of the power-law exponent, η ≈ 0.3. Better estimates of the exponent η can be obtained from the power spectrum or from other more
sophisticated methods.
Source: This figure is courtesy of Vasiliki Plerou and Parameswaran Gopikrishnan.

contracts traded in each individual transaction in case of the Germanmarket and the number of traded stocks per day in case
of the US market. For the analysis, we introduce a renormalized time scale ε between successive extrema—successive beats
of the metronome. Thus, ε = 0 corresponds to the beginning of a trend and ε = 1 indicates the end of a trend (Fig. 12(a)).
We analyze a range of ε for the interval 0 ≤ ε ≤ 2, so we can analyze trend switching processes both before as well as
after the critical value ε = 1. We find that new price extrema in the price are linked with peaks in the volume time series
(Fig. 12(b) and (c)) and, more surprisingly, that the volume obeys power law scaling both before as well as after the critical
point ε = 1 (Fig. 12(d) and (e)).
This switchingmechanism has no scale, for time scales varying over 9 orders of magnitude down to the smallest possible

time scale—the scale of single transactionsmeasured in units of 10ms. Thus, thewell-known catastrophic bubbles occurring
on large time scalesmay not be outliers but in fact single dramatic events caused by the inherent, scale-free behavior related
to the formation of increasing and decreasing trends on time scales from very large down to very small.
One reason the economy is of interest to statistical physicists is that, like an Ising model, it is a systemmade up of many

subunits. The subunits in an Isingmodel are called spins, and the subunits in the economy are buyers and sellers. During any
unit of time these subunits of the economy may be either positive or negative as regards perceived market opportunities.
People interact with each other, and this fact often produces what economists call ‘‘the herd effect’’. The orientation of
whether we buy or sell is influenced not only by our neighbors but also by news. If we hear bad news, we may be tempted
to sell. So the state of any subunit is a function of the states of all the other subunits and of a field parameter.

4. Correlated randomness & switching phenomena in physiology & medicine

4.1. What is the problem?

The most magical switching phenomena come to light when one examines biology and medicine. A developing embryo
suddenly switches from one state to another, almost as if there were amaster hand guiding it. A healthy individual suddenly
develops a systemic and fatal disease, almost as if ‘‘fate’’ has decreed that the time is up for living. Or genetic diseases like
cancer–the gene is present yet the patient remains healthy until – suddenly – tumor growth switches on. And, tragically,
molecules suddenly begin to aggregate in the brains when one contracts Alzheimer disease. Why? On themicroscopic level,
chainmolecules switch fromanunfolded state to a reproducible folded state for reasons not at all understood. Even everyday
phenomena involve switching—fromwake to sleep, and then from sleep to wake. Actually there are countless sleep-related
switchings occurring ‘‘while sleeping’’— from one sleep stage to another, and then to a brief wake state, followed by more
sleep [58].
Not only switchings occur, but fractal forms abound.Wenowknow, e.g., that nerve cells adopt patternswithwell-defined

fractal dimensions [59] but we do not know why. We know that the noncoding DNA has long-range power law (fractal)
correlations among its constituent base pairs [60,61].We are only beginning to understand the relation between the various
fractal forms that abound and the various forms of switchings.We do know that the two phenomena appear sometimes to be
related; e.g., we now know that sleep-wake switching interacts with the fractal scaling behavior of heartbeat intervals [62].
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b c
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Fig. 12. (a) Schematic visualization of trend segregation. Positive trends start at local price minima (red circles) and end at local maxima (blue circle)—and
vice versa. A transaction price p(t) is a local maximum if there is no higher transaction price in the interval t − 1t ≤ t ≤ t + 1t . Analogously, p(t)
is a local minimum if there is no lower transaction price in the interval t − 1t ≤ t ≤ t + 1t . We assign ε = 0 to the start of each trend, and ε = 1
to the end of each trend as shown for the first trend. In order to study trend switching processes – both before as well as after the end of a trend – we
consider additionally the subsequent sequence of identical length. In the region around ε = 1, we find scale-free behavior of related quantities—volume
and inter-trade time [55,54,53]. This behavior is consistent with ‘‘self-organized’’ macroscopic interactions among many traders [56], not unlike ‘‘tension’’
in a pedestrian crowd [57]. (b) Averaged volume sequence v∗(ε) of the German DAX Future time series. 1t ranges from 50 to 100 transactions (ticks).
Extreme values of the price coincide with sharp peaks in the volume time series. (c) A very similar behavior is obtained for the averaged volume sequence
v∗(ε) of S&P500 stocks. Here,1t ranges from 10 days to 100 days. (d) Log–log plot of the FDAX transaction volumes (50 ticks≤ 1t ≤ 1000 ticks) before
reaching an extreme price value (ε < 1, circles) and after reaching an extreme price value (ε > 1, triangles). The straight lines correspond to power-law
scaling with exponents β+v = −0.155± 0.004 and β

−
v = −0.068± 0.001. (e) Log–log plot of the transaction volumes shown in (c) indicates a power-law

behavior with exponents β+v = −0.109 ± 0.003 and β
−
v = −0.052 ± 0.001 which are similar to our results on short time scales. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: This figure is courtesy of T. Preis.
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4.2. Why do we care?

Diseases appear to fall into different ‘‘universality classes’’. For example, Alzheimer’s disease is only one form of
aggregation disease. Others may include ALS (amyotrophic lateral sclerosis) and Parkinson’s disease, and many think they
all involve amyloid mediated aggregation.
Since we do not really know for sure what AD is, our group’s approach is to try to discover what it is [63–67]. We are not

the only ones trying to do this, but our focus is on the ‘‘first three minutes’’ of the disease, a phrase we like to use because
it is the analog for AD of Weinberg’s The First Three Minutes of the Universe. What initially triggers AD? One of the current
hypotheses is that it is triggered by a phase transition. In a liquid-to-crystal phase transition, the liquid nucleates to a lower
free-energy state called a crystal. In AD, it looks as if the analogous event is a two-step process—first of protein folding
and then of protein aggregation. So one starts with a protein, specifically a peptide, in a correlated random configuration,
which first folds itself and then aggregates into a form called an amyloid fibril. These amyloid fibrils aggregate and form
microscopic objects in the brain.

4.3. What do we do?

The protein that aggregates in Alzheimer disease is actually a peptide, a fragment of a protein, and it comes in two forms:
one with 40 amino acids and the other with 42 amino acids. The extra two amino acids are hydrophobic. The ‘‘first three
minutes’’ of Alzheimer’s disease involves the aggregation of the entire peptide. The first step seems to be the formation
of what are called paranuclei, the joining together of a small number—e.g., 6 or 12-peptides, and then the aggregation of
the paranuclei into larger objects. The time scale here is slow, so the study of this phenomenon by molecular dynamics is
problematic. A typical timescale for amolecular dynamics simulation is on the order of nanoseconds, and herewe are talking
about minutes. We need to do something to speed up the simulation, and thus we draw on the concept of universality.
One thing we learn from universality is that completely different fluids behave the same way near phase transitions.

They even have identical critical exponents, regardless of the details. The critical factor does not seem to reside in the details
of the molecule but in the fact that they have an attractive part. Similarly, in the spirit of universality, one finds the same
generic collective behavior when one coarse grains the actual peptide by replacing each amino acid group by only four balls:
three in the peptide backbone and one representing the side group.
A typical simulationmight start with 28 of these coarse-grained peptides at time zero [68]. Then using the algorithm [69,

70] that speeds up the simulation by ten orders of magnitude, one can achieve aggregation of these peptides in a reasonable
amount of computer time (on the order of days of computer time). The structure of whatwe found is of considerable interest
to those studying Alzheimer’s disease. In particular, we find aggregation, with remarkably reproducible microscopic detail
concerning exactly what sticks to what. This is terribly important because if we know what sticks to what, we can imagine
covering the sticky spots and hence offering some potentially useful hints concerning possible therapies for Alzheimer’s
disease. That is, if we know what is sticking to what we can begin to think about how to block that sticking process.

5. Outlook

When one of the authors was fortunate, 40 years ago in 1969, to have Professor Berker as his first thesis student,
the concept of correlated randomness existed. We all knew a few limited results, such as the exact solution of the two-
dimensional Ising model for the special case of zero magnetic field. However knowing a solution does not tell us ‘‘what
matters’’, and only gradually did the key concepts of scaling, universality, and renormalization group develop sufficiently
that one could really understand the various phenomena.
The realization that a host of geometric phenomena share analogous features of scaling, universality, and renormaliza-

tion was not fully appreciated in 1969 [71]. Later still, the interplay between geometric and thermal phenomena revealed
new complexity such as higher order critical points [72]. Today we are still struggling to understand the basis of seemingly
ubiquitous phenomena, such as the Zipf law, which appear towork not only for word usage but for describing the size distri-
bution of firms [73]. Finally, the dynamics of firm growth (and firm shrinkage) is a problemwith little understanding [74–77].
Also, the cross-correlations between price changes of different stocks can be analyzed using the techniques of randommatrix
theory [78].
Price growth (and price collapse) has traditionally been viewed as a complex form of random walk, while now we are

beginning to understand this ubiquitous economic phenomenon as a sequence of switches (or ‘‘bubbles’’) of all sizes ranging
in time scales over 10 orders of magnitude from msec to days [79,80]. Perhaps most dramatic are the various novel forms
of switching phenomena (a catastrophic cascade of failures) that can occur when one damages a single node of one of the
several coupled networks [81].
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